
We applied the proposed method on various videos including our collected clips and the online videos. The compensated optical flow can filter the 
motion caused by camera shifting, distinguishing the relatively moving objects. Meanwhile, nearby objects' moving speed and direction can also be 
estimated from the compensated optical flow map. For instance:

• In group A, when the camera moving direction and the user movement are aligned straightforwardly, the vanilla optical flow and the compensated optical flow become identical, 
and the camera motion map tends to overlap with the motor focus area

• In group B, the compensated optical flow and camera motion indicated the camera moving potential is different from the actual body movement. 
• In B1 and B3, the camera moves toward the left corner, while the user moves toward the right side. 
• In B2, both the camera and the user move toward the left. 

• In group C, the camera in both C2 and C3 are turning right, while the user in C2 is moving right and the user in C3 is moving left. 
• In C1, the user stands statically, while the camera motion suggests that the camera is slowly pitching up. 

This figure shows the Visualization of ego-motion compensation, each image consists of four cells, from left to right: grayscale image with predicted moving direction, the magnitude 
of camera motion (ego-motion), raw optical flow (vanilla dense-optical flow), and optical flow with ego-motion compensation.

Assistive visual navigation we collected a dataset that is specialized for visual 
navigation including 50 clips of various scenarios. In advance, each video clip is 
observed by three researchers frame by frame, and a pixel location (x, y) of moving 
direction is annotated for each frame. 

This figure shows the sample of the collected dataset, where colored points represent the annotation 
from different researchers. The ground truth is calculated by the average of three different pixel 
locations. Specifically, (a) is a biking scene, (b) is a scooter riding scene, (c) (d) is walking scenes.

We implement an optical flow-based pixel-wise temporal analysis method to compensate for the camera motion with a Gaussian aggregation to 
smooth out the movement prediction area. We apply Singular Vector Decomposition (SVD) instead of classical feature mapping to reduce the 
computation load.

The proposed framework as shown above, (a) is a two consecutive frame pair, (b) is the original optical flow map (magnitude), (c) is the original optical flow field (vector), (d) is the 
compensated optical flow map, (e) is the camera motion ϵ, (f) is the compensated optical flow field, (g) is the probability map of attention point for I2, (h) is the aggregated gaussian 
distribution of attention points from (g), and (i) is the attention map for motor focus of frame I2.

Motor Focus: a novel framework for predicting how users physically move and orient 
themselves in space. Specifically, we introduce an optical flow-based pixel-wise 
temporal analysis that can predict the movement direction of users and 
simultaneously filter out the unintended and noise-like camera motion without any 
camera calibration.

(a) is the raw RGB image, (b) is the compensated optical flow, (c) is the attention area of 10 
consecutive frames, (d) is the attention map, aggregated by the gaussian distributions of 10 recent 
frames, (e) is the camera noise, (f) is the original optical flow, (g) is the probability map of focus center, 
and (h) is the compensated optical flow field.

General object detection models report all detected objects for users, which are 
widely used in various applications.

But for visually impaired individuals, prioritize object detection and provide 
immediate notifications for key entities (hazards) in specific directions is necessary.

We applied the proposed method to predict the center of moving direction and calculate the Mean Absolute Error (MAE) and Mean Squared Error 
(MSE) to compare with the annotated ground truth. Furthermore, we used the Signal-to-Noise Ratio (SNR) to compare the vertical motion along the 
time in a selected scene to test the video stabilization performance.

In summary, our method obtained: (1) the lowest prediction error of motor focus in both MAE and MSE, (2) and highest FPS due to less matching time, 
and (3) the better accuracy (alignment with ground truth) and stability (fluctuations) compared with other methods like SIFT and ORB.
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Assistive visual navigation systems for visually impaired individuals have become 
increasingly popular thanks to the rise of mobile computing. 
Most of these devices work by translating visual information into voice commands. In 
complex scenarios where multiple objects are present, it is imperative to prioritize 
object detection and provide immediate notifications for key entities in specific 
directions. This brings the need for identifying the observer’s motion direction (ego-
motion) by merely processing visual information, which is the key contribution of this 
project. 

Motor Focus, a lightweight image-based framework that predicts the ego-motion—
the humans’ (and humanoid machines’) movement intentions based on their visual 
feeds, while filtering out camera motion without any camera calibration. 

4.78 7.80
13.18 9.493.42

7.45

12.61
13.33

4.58

9.96

10.04 12.83

0

5

10

15

20

25

30

35

40
Ous SIFT ORB LK

M
SE

 (x
10

00
)

Bike Scooter Walk

Abstract

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

Current Challenge

Our Solution

Collected Dataset

Framework

Experiments

Results

Project Paper Code

Scene Test


	Slide 1

