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Abstract—This article investigates the effect of erroneous
channel estimation on performance of physical layer network
coding over fading channels. In this scenario, the relay maps the
superimposed noisy modulated data, received from the two end
terminals, to network coded combination of the source packets.
We consider channel estimation error to be Gaussian distributed
and formulate the network coding error by the distance between
real and estimated points in the channel coefficients plane. Using
this model, we present a statistical lower bound on variance
of estimation error that can be tolerated by the relay terminal
without imposing a network coding error on the system.

Index Terms—Channel estimation error, physical layer net-
work coding, cooperative relaying, network throughput.

I. INTRODUCTION

S INCE network coding was introduced [1], wireless net-
work coding has received a lot of attention. This increased

interest is due to considerable gains that can be achieved by
application of network coding in wireless relaying scenarios.
Physical layer network coding makes use of inherent additive
nature of electromagnetic waves, arriving simultaneously at a
relay, to further improve network coding and increase network
throughput [2], [3].

Denoise-and-forward (DNF), a relaying scheme in which
there is no need to decode the received signal at the relay, is
introduced in [4], and later expanded in [5] to present adaptive
network coding and modulation design. However the authors
assume that relay terminal can accurately estimate the channel
coefficients. The robustness of the DNF physical layer network
coding scheme with respect to channel estimation error is
studied in [6]. Channel estimation error is considered for both
links and performance of this scheme, in terms of end-to-
end network throughput, is evaluated for different values of
estimation error. However, no analytical results are provided
to calculate this performance degradation.

In this article, Gaussian error in channel estimation is con-
sidered, and a novel analytical method to determine a bound
on tolerable error and hence performance of the network is
proposed. This paper compliments our previous work [6] with
an analytical lower bound on tolerable channel estimation
error to avoid majority of network coding errors. The results
presented in this article may be used as a design criterion for
practical systems utilizing physical layer network coding.
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The rest of this paper is organized as follows. Section II
describes the physical layer network coding and channel esti-
mation parameters. Section III presents problem formulation
and the proposed solution. Numerical and simulation results
are presented in section IV. Section V concludes this paper.

II. SYSTEM MODEL

Consider a simple bidirectional relaying scenario, where
terminal A and B have traffic to send to each other, and
terminal R acts as a relay [5]. Terminal R performs maximum-
likelihood (ML) detection, and quantizes the received signal
from simultaneous transmission of data from A and B, i.e.
𝑌𝑅 = 𝐻𝐴𝑋𝐴 + 𝐻𝐵𝑋𝐵 + 𝑍𝑅, using a denoising mapper
𝐶 and a constellation mapper, ℳ, where 𝐻𝐴 and 𝐻𝐵 are
the channel coefficients from terminals A and B to relay R,
respectively; 𝑍𝑅 ∼ 𝑁(0, 𝜎2

𝑛); 𝑋𝐴 and 𝑋𝐵 are the modulated
symbols from terminals A and B.

The network coded data can be written as:

𝑆𝑅 = 𝐶(𝑆𝐴, 𝑆𝐵), (1)

where 𝑆𝐴, and 𝑆𝐵 are ML estimates of digital data from A
and B, namely 𝑆𝐴 and 𝑆𝐵 . Denoising maps are optimized
by maximizing the minimum Euclidean distance between all
transmitted signal pairs (𝑆𝐴, 𝑆𝐵) and their estimates (𝑆𝐴, 𝑆𝐵)
[5].

The network code selection only depends on the channel
amplitude ratio, 𝛾, and phase difference, 𝜃, i.e, [6]:

𝐶 = 𝑓(𝛾, 𝜃). (2)

Note that 𝐻𝐵/𝐻𝐴 = 𝛾 𝑒𝑥𝑝(𝑗𝜃). It has been shown that
erroneous channel estimation may lead to selection of a sub-
optimum code, since the distance profile used for network
code selection at the relay is based on the estimates of the
channel coefficients and not the actual values [6]. Moreover,
it has been shown that this non-optimal code selection may
not lead to a network error if estimation errors are in a certain
range. In this case, the network performance will not degrade
drastically. In section III, we formulate impact of imperfect
channel estimation on physical layer network coding to get a
lower bound on this error range.

III. PROPOSED ANALYTIC SOLUTION

In this section, we assume Gaussian channel estimation
error for both links 𝐴 and 𝐵, i.e.,

�̂�𝐴 = 𝐻𝐴 + 𝑍1, �̂�𝐵 = 𝐻𝐵 + 𝑍2, (3)

where 𝑍1 and 𝑍2 are independent Gaussian random variables,
𝑍1, 𝑍2 ∼ 𝑁(0, 𝜎2) . Relay node will use this erroneous data
to perform network coding utilizing (2). The distance between
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Fig. 1. Network Coding Map [5]. Each region is associated with a unique
network code, 𝐶𝑖. For instance, note the symmetry between regions associated
with codes 𝐶0 and 𝐶1 and between regions associated with codes 𝐶2 to 𝐶9.

the Channel point 𝑃1 = (𝐻𝐴, 𝐻𝐵) and the estimated point
𝑃2 = (�̂�𝐴, �̂�𝐵) in 𝐻𝐴 −𝐻𝐵 plane can be calculated using
(3) as,

𝑑𝑃1𝑃2 =

√
𝑍1

2 + 𝑍2
2. (4)

Furthermore the network coding map consists of discrete
region in the 𝛾 − 𝜃 plane according to (2). These regions,
𝑅𝑖, correspond to different network codes. Each region, 𝑅𝑖,
may be represented by a statistical center, 𝑃 (𝑥𝑐, 𝑦𝑐), with
coordinates defined in 𝛾 cos 𝜃 − 𝛾 sin 𝜃 plane as,

𝑥𝑐 = 𝔼[𝑥∣𝑅𝑖], 𝑦𝑐 = 𝔼[𝑦∣𝑅𝑖], (5)

where 𝑥 = 𝛾 cos 𝜃 and 𝑦 = 𝛾 sin 𝜃, and 𝔼[.] denotes
expectation function.

The shortest distance between this point and any neighbor-
ing region is considered as an error threshold, 𝑇𝑖, for each
region, 𝑅𝑖. If the points 𝑃1 and 𝑃2 are in different regions of
the network coding map, then there will be a network error due
to channel estimation error. At any region in 𝛾 cos 𝜃− 𝛾 sin 𝜃
plane, if the distance between the points 𝑃1 and 𝑃2 is greater
than the corresponding threshold, i.e., 𝑑𝑃1𝑃2 ≥ 𝑇𝑖, or in terms
of squred distance,

𝑑2𝑃1𝑃2
≥ 𝑇 2

𝑖 , (6)

a network coding error will happen. To consider all points
and regions, expected value of squared distance, 𝑑2𝑃1𝑃2

, and a
weighted threshold of all regions should be considered, i.e.,

𝔼[𝑑2𝑃1𝑃2
] ≥ 𝑇 2, (7)

where expectation is over the Gaussian random variables 𝑍1

and 𝑍2 and 𝑇 2 is the total weighted squared threshold defined
as,

𝑇 2 =
∑
𝑖

𝑃𝑅𝑖𝑇
2
𝑖 . (8)

where 𝑃𝑅𝑖 is the probability of region 𝑅𝑖. Substituting 𝑑𝑃1𝑃2

from (4) into (7), we have,

𝜎2 ≥ 𝑇 2/2, (9)

which is lower bound on variance of estimation error, 𝜎2, for
which a network coding error will happen. Note that we have

TABLE I
PROBABILITY OF REGIONS IN NETWORK CODING MAP OF FIG. 1 FOR

RICIAN CHANNEL EXAMPLE (K-FACTOR = 10 𝑑𝐵)

Region (𝑅𝑖) Probability (𝑃𝑅𝑖
)

𝑅0 & 𝑅1 0.2600

𝑅2 to 𝑅9 0.0600

considered all the regions in calculating (9) to account for
their probabilities.

Numerical solutions and simulations for this lower bound,
under specific channel realizations, are presented in the next
section.

IV. NUMERICAL RESULTS

In this section, a numerical value for the lower bound of
(9) is derived. The proposed analytic solution in section III
works regardless of the modulation scheme used at terminals
A and B. However we assume QPSK modulation in this
section for simplicity of our proposed solution. Although the
proposed method may be applied to various channel models,
in this article we used Rician model as an example. Probability
distribution function (pdf) for both channels, 𝐻𝐴 and 𝐻𝐵 , is
given by,

𝑓(ℎ∣𝑣, 𝜎𝑟) =
ℎ

𝜎2
𝑟

𝑒𝑥𝑝(
−(ℎ2 + 𝑣2)

2𝜎2
𝑟

)𝐼0(
ℎ𝑣

𝜎2
𝑟

), (10)

where 𝐼0(.) is modified zeroth order Bessel function of first
kind, ℎ is either 𝐻𝐴 or 𝐻𝐵 , with Rician K-factor (dB) =
10 𝑙𝑜𝑔10(𝑣

2/2𝜎2
𝑟).

For case of QPSK modulation at both terminals 𝐴 and 𝐵
and closest-neighbor clustering method the network code map
(2) is presented in Fig. 1 [5]. As shown in this figure, 10
network codes are obtained in this case. The joint pdf of
𝛾 cos 𝜃 and 𝛾 sin 𝜃 can be calculated using (10),

𝑓𝑋,𝑌 (𝑥, 𝑦) =∫ ∞

0

𝑤3

𝜎4
𝑟

𝑒𝑥𝑝[
(𝛾2 + 1)𝑤2 + 2𝑣2

2𝜎2
𝑟

]𝐼0(
𝑤𝑣

𝜎2
𝑟

)𝐼0(
𝑤𝑣𝛾2

𝜎2
𝑟

) d𝑤, (11)

where 𝑥 = 𝛾 cos 𝜃, 𝑦 = 𝛾 sin 𝜃, and 𝛾2 = 𝑥2 + 𝑦2. (10) and
(11) are used to generate numerical results in the following
manner. Integrating (11) over each region, 𝑅𝑖, determines
region probabilities. Table I demonstrates these probabilities
for Rician channels with K-factor = 10 𝑑𝐵. Note that region
𝑅0 and 𝑅1 and regions 𝑅2 to 𝑅9 are symmetric as depicted in
Fig. 1. Fig. 2 depicts regions 𝑅0 and 𝑅4 with their neighboring
borders. 𝑅0 and 𝑅4 have 2 and 4 discrete sections, 𝑆𝑖𝑗 ,
respectively. The corresponding statistical centers, (𝑥𝑐, 𝑦𝑐),
shortest distance to neighboring regions, 𝑇𝑖𝑗 , and section
probabilities, 𝑃𝑆𝑖𝑗 , are given for all sections of each region in
Table II.

By symmetry of the distributions and regions as shown in
Fig. 1, 𝑅1 has same thresholds as 𝑅0, and rest of regions have
same thresholds as 𝑅4. Weighted threshold for each region can
be defined as,

𝑇𝑖 =
∑
𝑗

𝑃𝑆𝑖𝑗𝑇𝑖𝑗 . (12)
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Fig. 2. Regions 𝑅0 and 𝑅4 with corresponding sections, borders, and
statistical centers (𝑥𝑐, 𝑦𝑐). Sections and borders are given for any fading
channel model, statistical centers are given for Rician channel example with
K-factor = 10 𝑑𝐵.

Using (8), (12), values of 𝑃𝑅𝑖 , 𝑃𝑆𝑖𝑗 , and 𝑇𝑖𝑗 , from Tables I
and II, we have, 𝑇 2 ≈ 0.1, and from (9),

𝜎 ≥ 0.22. (13)

End-to-end network throughput in terms of number of de-
livered packets for different values of 𝜎 (standard deviation)
are shown in Fig. 3. Note that packet error rate is used to
evaluate the network throughput, since in practice, we cannot
know which bit location has failed. We have applied cyclic
redundancy check codes to packets to check whether one
packet failed or succeeded.

In this simulation set, 𝐻𝐴 and 𝐻𝐵 are considered to be
Rician distributed with previously mentioned parameters (K-
factor = 10 𝑑𝐵). Packets of length 256 symbols are considered.

It is assumed that channel coefficients are constant during
transmission of each packet. Signal to Noise Ratio (SNR) is
defined as (𝔼[∣𝐻𝐴∣2] +𝔼[∣𝐻𝐵∣2])/2𝜎2

𝑛, where 𝜎2
𝑛 is variance

of zero mean additive Gaussian noise of channels. Moreover,
to further concentrate on performance degradation due to
network coding error, perfect ML detection is assumed at both
end terminals, A and B, as well as relay, R.

Fig. 3 depicts end-to-end throughput for different values
of 𝜎 (standard deviation) together with pure XOR network
coding. In this figure, 𝜎 is increased by steps of size 0.04
from 0.14 to 0.30. A larger gap between curves corresponding
to 𝜎 values of 0.22 and 0.26 is seen. This larger gap is due
to network coding error, occurring for a larger quantity of
symbols in comparison with number of network coding errors
for smaller values of 𝜎. The value of 𝜎 corresponding to this
gap is between 0.22 and 0.26, which is in agreement with the
lower bound given by (13). Also note that the performance
curve for 𝜎 values greater than 0.22 are very close to the
performance curve of XOR network coding, i.e., for these
values of 𝜎, there is no advantage in using 10 denoising maps
at the relay than just the XOR network coding.

V. CONCLUSIONS

This article presents a statistical lower bound on variance
(standard deviation) of channel estimation error to prevent net-
work coding error, in a two way relaying system with physical
layer network coding. Gaussian distributed error in estimation

TABLE II
STATISTICAL CENTERS, THRESHOLDS, AND SECTION PROBABILITIES OF

REGIONS 𝑅0 AND 𝑅4 FOR RICAN CHANNEL EXAMPLE (K-FACTOR =
10 𝑑𝐵)

Region Section Statistical Threshold (𝑇𝑖𝑗) Section
(𝑅𝑖) (𝑆𝑖𝑗) Center (Shortest Probability

(𝑥𝑐, 𝑦𝑐) Distance) (𝑃𝑆𝑖𝑗
)

𝑅0
𝑆01 (1.0090, 0) 0.4206 0.1300
𝑆02 (−1.0090, 0) 0.4206 0.1300

𝑅4

𝑆41 (1.6479, 1.0658) 0.2472 0.0047
𝑆42 (0.6899, 1.0522) 0.1899 0.0253
𝑆43 (−0.4493, 0.6627) 0.1383 0.0253
𝑆44 (−0.4260, 0.2947) 0.0740 0.0047
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Fig. 3. End-to-end Network throughput (bps/Hz) vs SNR (dB) for different
values of 𝜎 - Rician channel example with K-factor = 10 𝑑𝐵.

of channel coefficients is considered, and the network coding
error event is formulated. Using the expected value of distance
between real and estimated points in the channel coefficients
plane, thresholds and statistical centers for different regions
are defined as shown in Fig. 2. Utilizing region probabilities
and thresholds, a lower bound on variance of estimation error
is calculated. Although the proposed method may be applied to
various channel models, in this article we used Rician model
as an example. In case of Rician channels with K-factor =
10 𝑑𝐵, presented in Table II, the lower bound on standard
deviation is calculated to be 0.22. Simulation results verified
the analytically calculated lower bound on variance in terms
of network throughput degradation.
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