
OPEN

ONCOGENOMICS

InFlo: a novel systems biology framework identifies
cAMP-CREB1 axis as a key modulator of platinum resistance
in ovarian cancer
N Dimitrova1, AB Nagaraj2, A Razi2, S Singh2, S Kamalakaran1, N Banerjee1, P Joseph2, A Mankovich1, P Mittal3,4, A DiFeo2,4

and V Varadan2,4

Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its
development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific
changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed
InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional
framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo
robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic
models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits
higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to
published pathway network modelling approaches. Furthermore, InFlo’s ability to infer the activity of unmeasured signalling
network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of
primary high-grade serous ovarian cancer tumours (N= 357) to delineate mechanisms underlying resistance to frontline platinum-
based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism
associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that
inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian
cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and
widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and
therapeutic targets.
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INTRODUCTION
The etiology and progression of complex diseases typically
involves coordinated dysregulation of multiple genes interacting
in intricate ways that are not yet fully understood. Diseased cells
exhibit significant perturbations at multiple genomic levels
ranging from mutations and chromosomal aberrations in DNA
to expression changes in mRNA and proteins. Genome-wide
molecular profiling technologies have revealed genomic aberra-
tions affecting hundreds of genes, each of which occurs
infrequently in diseased tissues. Such heterogeneity in genomic
aberrations at the level of individual genes necessitates the
development of analytic approaches that can systematically
integrate prior biological knowledge with molecular profiling data
to delineate underlying biological mechanisms.1 These
approaches fall into three main categories: gene set enrichment,
interaction subnetwork construction and signalling network
modelling,1 which utilize well-curated databases of gene sets,2

protein–protein interactions and signalling pathway databases,3,4

respectively. Gene set enrichment or protein–protein interaction

subnetworks do not account for the complex regulatory interac-
tions that underlie the functioning of signalling networks in
contrast to pathway modelling frameworks that explicitly incor-
porate regulatory interaction information with multi-dimensional
molecular profiles to identify functional activation of pathway
subnetworks.1,5–7 However, published network modelling meth-
ods do not robustly infer the activity of unmeasured signalling
components such as protein complexes and do not explicitly
consider the possibility of systematic deviations in pathway
network structures arising due to inadequate curation of tissue-
specific regulatory relationships and/or changes in pathway
regulatory interactions caused by genomic aberrations. Thus there
is a clear need to develop robust approaches that can seamlessly
integrate multi-dimensional molecular profiles of individual
tumour samples while accounting for potential systematic
structural deviations from the curated pathway networks in the
specific tissue context.
Here we present a novel multi-omics systems biology frame-

work, InFlo, for estimating signalling network activities through a
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unique multidimensional model that explicitly accounts for
potential tissue-specific deviations in pathway regulatory struc-
tures. We show using extensive cross-validation that InFlo robustly
characterizes tissue-specific differences in activities of signalling
networks on a genome scale, while also inferring the activities of
unmeasured signalling pathway components. We then apply InFlo
to a large ovarian cancer multi-omics dataset to identify signalling
pathways associated with resistance to platinum-based che-
motherapy, followed by experimental confirmation.

RESULTS
InFlo overview
The InFlo framework estimates activities of interactions within
signalling pathways in individual patient samples through the
integration of multiple molecular measurements while accounting
for measurement noise as well as possible errors/disruptions in
pathway model structures. The framework can be described in the
following main conceptual steps as highlighted in Figure 1. The
InFlo methodology contains the following four key computational
steps: (1) integration of multi-omics profiles to infer differential
gene activities per patient sample, (2) assessing activity of
pathway interactions by integrating differential gene activities
with pathway network structure, (3) capturing pathway network
deregulations in individual tumour samples.

(1) Integration of multi-omics profiles to infer differential gene
activities: The first step (Figure 1, Step A) in the InFlo
methodology is designed specifically to integrate information
from multi-omics profiles of individual samples to estimate the

differential activity levels of genes. Here we provide details on
integrating somatic copy-number alterations and gene expression
data but the model is naturally scalable to include other molecular
measurements as well. The effects of differential dosage of gene
copy-number and gene expression are combined into a two-
element activity level vector denoted by A(i). This activity
vector is subsequently used to determine the gene state, which
is a discrete value in the set Ω= {− 1, 0, 1}, respectively,
corresponding to inactivated, neutral and activated states. These
states are determined based on comparing the values of gene-
level copy-number or expression in each tumour sample against a
cohort of normal tissues. These are learned using class-conditional
distributions such as Gaussian mixture models with three
components, each for one of the three states for exampleP3

j¼1 πjNðμj ; ΣjÞ, where μj and Σj are the mean and the variance of
the class-conditional normal distribution for gene expression and
copy-number and πj is the prior probability of class j, obtained by
applying the Maximum Likelihood estimate. This is advantageous
because, instead of having one discrete state for each gene in a
given tumour sample, we have three probabilities for each state j
of the gene i, denoted by Sj(i) using Bayes rule, that is

Sj ið Þ ¼ PðSðiÞ ¼ j9AðiÞÞ ¼ πjNðAðiÞ;μj ;ΣjÞP3

l¼1
πlNðA ið Þ; μl ;ΣlÞ

. Therefore, the state of

each gene with activity vector A(i) is represented by a
three-element probability vector of SðiÞ ¼ S1 ið Þ; S2 ið Þ; S3 ið Þ½ �T .
The maximum aposteriori probability estimate then provides
the most likely state for the gene, that is SMAP ið Þ¼
argmaxj Sj ið Þ¼ argmaxj PðSðiÞ ¼ j9AðiÞÞ. Notably, other molecular
factors with known impact on gene/protein expression can also be
included in the activity vector A(i), along with their expected

Figure 1. Overview of the InFlo computational framework. The left panel details the steps A–E in the InFlo computational pipeline. (a) InFlo
integrates multi-omics data from an individual tumour and estimates the probability of each gene being in one of three states: active, inactive
or neutral/unchanged as compared to tissue-matched normals. (b) InFlo parses pathway network databases and deconstructs each network
into individual interactions, whose activities are to be inferred for the given tumour sample. (c) InFlo generates distribution of gene states by
sampling from the gene activity probabilities. (d) InFlo computes the state of each interaction based on the states of the parent genes of the
interaction. For example, interaction i is active when Gene1 (activator) is active and Gene2 (repressor) is inactive. However, if the state of
Gene2 (repressor) is active, the interaction i is inactive. Similarly, interaction j is active when Gene3 is inactive, and vice versa. (e) InFlo then
evaluates whether the activity status of a gene downstream of a given interaction is consistent with the interaction’s activity status. Interaction
vectors that are inconsistent with one or more downstream genes are rejected with finite probability. For example, in the second interaction
vector, interaction l is active whereas the target of the interaction, Gene7, is inactive. Thus, this interaction vector is inconsistent with the gene
state vector and is rejected. The resulting interaction vectors thus provide the joint-distribution of the pathway interaction activities in the
individual tumour sample, while also accounting for inconsistencies between gene activities and pathway network definitions. The right panel
details the data flow through the InFlo computational suite, integrating pathway network information from public databases and multi-omics
tumour profiles to generate sample-specific pathway network activities.
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effects on gene expression. For example, given that increased
DNA methylation is expected to contribute negatively on gene
expression, the measurements from the DNA methylation assay
would be scaled by a negative factor before inclusion into A(i).
This framework thus allows for scalable integration of multi-omics
profiles on a per-sample basis. The resulting gene-level activity
probabilities are then integrated with the pathway network model
as detailed below.

(2) Assessing activity of pathway interactions by integrating gene
activities with pathway network structure: Given that pathway
network models are intended to capture mechanistic events that
enable cells to integrate molecular information resulting in a
functional cellular response, we developed InFlo to explicitly
model the regulatory structure defined in the pathway network.
InFlo defines the basic unit of information within a pathway as the
activity of individual interactions among genes as captured in the
pathway network annotation. This information is then captured as
a vector of interaction activities for all the interactions defined in a
particular pathway. Each interaction is defined by a set of parent
genes that jointly regulate one or more children genes (Figure 1,
Step B). An individual interaction activity is defined as an
ensemble output of the activities of the parent genes of the
interaction in the particular sample. In the simplest case, the
predicted interaction activity is a linear combination of all the
votes of the parents. The state vector of an interaction i denoted
by Ii is given by S Iið Þ ¼ Ppi

k¼1 rik � SðgikÞ
� �

, where SðgikÞ is the state
vector of the kth parent of the ith interaction and rik is the
coefficient capturing the regulatory influence of the gene ik
towards this interaction. Likewise, pi is the number of parents for
interaction Ii. Considering equal influence from all parents,
rikj j ¼ 1

pi
. Therefore if a parent gene is known to positively regulate

the interaction, then the vote of the parent is (rik ¼ 1
pi
), whereas if a

parent negatively regulates the interaction, rik ¼ - 1
pi
. Finally,

the state of an interaction S(Ii) is obtained using the similar
maximum aposteriori probability estimation used for genes, that is
SMAP Iið Þ¼ argmaxj Sj Iið Þ.
Thus, InFlo explicitly models pathway deregulations as pertur-

bations in the information flow within the signalling network. In
other words, by focusing on interaction activity instead of gene
activity levels, InFlo uniquely focuses on the information
transmitted through the various arms of a signalling network’s
regulatory topology. The scalability of this modelling strategy is
evident by the possibility to further extend this framework to non-
equal voting strategies to account for differences in the influence
of parent genes on a downstream interaction, when such prior
biologic information is available. As an extreme example, this
framework allows the incorporation of a snowballing strategy,
where down-regulation of even one parent could result in
complete disruption of complex-formation leading to abrogation
of an interaction’s activity.

(3) Capturing pathway network deregulations in individual tumour
samples: In order to capture the pathway activity in a given
patient sample, InFlo estimates the joint-probability distribution of
activities of interactions through a generative process that
incorporates a sampling framework8 that accounts for errors
arising from measurements as well as pathway network disrup-
tions arising from genomic aberrations.
For each patient and pathway, the sampling procedure

generates a large number of instances of activity states of genes
with associated measurements by sampling the background
probabilities derived from gene activity model described earlier
(Figure 1, Step C). Activity levels of pathway entities that do not
have any measurement are derived by propagating the states of
the measured entities through the pathway network. For each
sampled instance of gene activity levels in a pathway, the

interaction states for the pathway are computed using the
ensemble strategy for each interaction as defined earlier
(Figure 1, Step D). Furthermore, at this stage a consistency check
is performed between the states of an interaction and its children.
Assuming reasonable probabilities of pathway model errors and
measurement errors, we can estimate the likelihood of rejection of
inconsistent pathway interaction vectors from the full set of
generated interaction vectors (Figure 1, Step E). An interaction is
deemed consistent if the activity states of the majority of children
are equal to the predicted interaction activity state. Else, the
interaction is deemed inconsistent. For instance, if the interaction
k has three children, it is deemed consistent if the inferred state of
interaction matches at least the state of two children. In general, if
C(k) is the set of the children of interaction k, then it is consistent if
we have

P
gAC kð ÞI SMAP gð Þ ¼ SMAP kð Þð ÞX1

2 C kð Þj j where I(.) is the
identity function and |C(k)| is simply the cardinality of the set C(k).
We thus compute the probability of correctness of an

interaction configuration as a function of the probabilities that
the underlying data and pathway models are correct. If we assume
that the probability of measurement errors leading to a state
change in the corresponding interaction is α and likewise the
probability of incorrect prediction due to errors in the pathway
model or underlying structural aberrations to be β, we obtain the
probability of consistency of an interaction with n states as shown
in Supplementary Table S1.
We then obtain the probability of a predicted interaction state

being correct in the case of the predicted interaction state being
consistent with the state of its children as:

P Interaction is Correct9Consistency
� �

¼ P Consistency9Model is correct
� �

P Model is correctð Þ
P Consistency9Model is correct
� �

P Model is correctð Þþ
P Consistency9Model is incorrect
� �

P Model is incorrectð Þ
which, for n= 3, becomes:

P Interaction is Correct9Consistency
� �

¼ ð1 - αÞð1 - βÞ
1 - αð Þ 1 - βð Þ þ αβ=ðn - 1Þ ¼

ð1 - αÞð1 - βÞ
1 - αð Þ 1 - βð Þ þ αβ=2

ð1Þ

Similarly, we can compute the probability of correctness of a
predicted interaction state given an inconsistency between the
states of the children and predicted interaction state as:

P Interaction is Correct9Inconsistency
� �

¼ P Inconsistency9Model is correct
� �

P Model is correctð Þ
P Inconsistency9Model is correct
� �

P Model is correctð Þþ
P Inconsistency9Model is incorrect
� �

P Model is incorrectð Þ
which, for n= 3, becomes:

P Interaction is Correct9Inconsistency
� �

¼ αð1 - βÞ
α 1 - βð Þ þ ð1 - αÞβþ αβðn - 2Þ=ðn - 1Þ

¼ αð1 - βÞ
α 1 - βð Þ þ ð1 - αÞβþ αβ=2

ð2Þ

We observe that for small values of α and β, the probability of
correctness of a consistent interaction tends to 1 whereas the
probability of correctness of an inconsistent interaction remains
low. Given that we expect the pathway annotations to be largely
correct and somatic genomic aberrations impact only a relatively
small subset of genes in the genome, we assume that β is typically
small for most pathway interactions. Thus, we choose to reject
inconsistent interactions with a low probability (0.05) while
generating the joint-distribution of the information flow vectors,
and accepting the consistent interactions with a high probability
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(0.99). Using these probabilities, we use a generative model to
capture the joint-distribution of states of interactions for a given
pathway in a tissue sample.
Notably, published methods that attempt to model pathway

activity take the average value of all gene activity levels to
represent the pathway activity level in a given patient sample,7

thus completely missing the topological structure implicit in the
pathway, as outlined in an example pathway with two
interactions in Supplementary Figure S1. We therefore represent
each patient’s pathway activity as a joint-distribution of the
activity states of all interactions in that pathway, which we term
information flow vector since it captures each mechanistic
information transfer event as defined in the pathway. The joint-
distribution of interaction activities for each patient sample in a
particular pathway can then be used to define intersample
distances, using measures such the Minkowski distance. These
inter-patient distances can then be used in both supervised and
unsupervised settings to identify clinically relevant patient
subgroups as well as the most informative pathways for
distinguishing them.

Robustness evaluation of InFlo
We first evaluated the ability of InFlo to robustly identify
pathways discriminative of cancer phenotypes and compared
InFlo’s performance against two published pathway network
modelling approaches highlighted in a recent review of pathway
network approaches applied to cancer genomes,1 PathOlogist7

and PARADIGM,6 although they significantly differ in their
conceptual approaches. Specifically, we chose PathOlogist
because it attempts to capture the inconsistency between the
measurements and the curated signalling network, while
PARADIGM attempts to smooth gene-level measurements to
be consistent with the curated network. Given that both
PathOlogist9 and PARADIGM6 were previously used to identify
pathways associated with estrogen receptor (ER) status in breast
cancer, we leveraged publicly available gene-expression and
somatic copy-number profiles of breast cancers (N = 301) from
The Cancer Genome Atlas (TCGA) for comparative robustness
analysis. We applied InFlo and the other two algorithms to
assess the association of 183 pathways curated from the NCI-
PID, Reactome and KEGG pathway databases with ER status of
these breast cancers.
Accordingly, we employed a stringent double-loop cross-

validation framework10 (Figure 2a) to assess whether the
algorithms identify pathways discriminative of ER status that also
validate on previously unseen data. InFlo identified a larger
number of putative pathways discriminative of ER status, at higher
frequencies of repeated identification in the discovery phase, as
compared to either PathOlogist or PARADIGM (Figure 2b). InFlo
also identified a higher number of pathways appearing at any
given frequency in the discovery loop as compared to either
PathOlogist or PARADIGM (Figure 2c), suggesting InFlo being
more sensitive but also exhibiting higher reliability than the
comparators in identifying pathways discriminative of ER status in
breast cancer. The higher average sensitivity and specificity of
InFlo as compared to PathOlogist or PARADIGM is evident from
the receiver operating characteristics curves for each of the
algorithms (Figure 2d), plotted by varying the silhouette threshold
to select pathways discriminative of ER status. In addition to
exhibiting higher performance metrics, InFlo revealed both
previously known and novel pathways to be associated with ER
status in breast cancer (Supplementary Tables S2-S4). InFlo’s
association of SMAD2/3 signalling in over 99% of the discovery
and evaluation datasets is consistent with previous reports of
cross-talk between TGF-beta signalling and the ER pathway,11 an
association that was not detected by PathOlogist (Supplementary
Figure S2), thus highlighting the utility of InFlo’s approach of

modelling all of the signalling pathway’s interaction activities.
Similarly, the FOXM1 transcription factor network was associated
by InFlo with ER status in 92 and 85% of the discovery and
evaluation cross-validation datasets (Supplementary Table S2),
and was consistent with published reports of regulation of this
pathway by ER-alpha in breast cancers.12,13 InFlo’s inference of
higher activity of the Erbb receptor signalling network in HER2-
amplified breast cancers (Supplementary Figure S3) also highlights
InFlo’s ability to infer the effects of copy-number alterations on
downstream signalling networks. Taken together, these findings
strongly support InFlo as a robust methodology to discover
signalling network deregulations associated with disease
phenotypes.

Delineation of signalling pathways associated with progression-
free survival of ovarian cancers using InFlo
Given the robustness of InFlo, we next applied InFlo to decipher
potential mechanisms mediating platinum resistance in high-
grade serous ovarian carcinomas (HGSOC). Ovarian cancer is an
inherently difficult cancer to treat and the frontline treatment is
the use of platinum-based chemotherapeutic agents. While some
HGSOC patients respond briefly to platinum therapy, disease
recurrence or progression is common, with 5-year overall-survival
hovering around 30%.14 Therefore, there is a clear clinical need for
biomarkers predictive of benefit from platinum therapy as well as
new therapeutic targets that could enable the development of
alternative interventions in this deadly disease.
We used InFlo to identify dysregulated pathways in individual

HGSOC samples (N= 357) when compared to a pool of normal
fallopian tube samples within the TCGA’s HGSOC dataset.
Progression-free survival and additional clinical data
(Supplementary Table S5) was available for a total of 267 samples
in the ovarian dataset and was associated with the pathway-based
clustering of patient samples. Using the average pathway
interaction activity vectors for each given pathway, we estimated
interpatient distances and performed hierarchical clustering to
identify patient subgroups. Subsequently, we assessed differences
in progression-free survival between subgroups controlling for
potential confounding effects of clinico-pathological factors.
InFlo identified seven pathways as significantly associated with

platinum resistance in the TCGA HGSOC dataset, with just two
pathways remaining significant after adjusting for clinico-
pathological factors (Table 1). InFlo was the only computational
framework to identify regulation of p38-alpha to be associated
with progression-free survival, consistent with published reports
showing increased protein expression of phosphorylated-p38
MAPK in platinum-resistant ovarian carcinoma cell lines.15,16 While
a majority of the pathways in Table 1 contained a large number of
genes and involved multiple arms, we were particularly intrigued
by the Class IB PI3K non-lipid kinase events pathway (P-value
⩽ 0.001), given that it predicted higher cAMP activity to be
associated with platinum resistance.
Figure 3a details the clustering of the patient samples using

the InFlo-derived interaction activity levels (information flow
vectors) in each of the patient samples, resulting in two major
clusters exhibiting differential activity of the PDE3B-cAMP axis.
Significant difference in progression-free survival was observed
between High cAMP and Low cAMP clusters (P-value ⩽ 0.001),
with high inferred activity of cAMP being associated with the
poorest progression-free survival (Figure 3b), and remained
significant (P-value = 0.016) even in the multivariable setting, after
adjusting for tumour stage, tumour grade, age at initial diagnosis
and residual disease burden at surgery. Figure 3c details the InFlo-
derived interaction activities in the pathway network, further
highlighting that high cAMP activity is the primary contributor to
poor disease-free survival in HGSOC treated with platinum-based
chemotherapy.
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We then sought to evaluate whether the InFlo-inferred cAMP
activity levels could be corroborated using downstream transcrip-
tional effects of cAMP activity. The transcription factor CREB1 is the
critical transcriptional regulator of cAMP responsive elements. The
binding of CREB1 to promoter elements of cAMP-dependent target
genes requires activation of CREB1 by cAMP-dependent protein
kinase A (PKA) via the phosphorylation of CREB1 at Ser-13317

(Figure 3d). Accordingly, we ascertained the activity of CREB1 in
each of the TCGA ovarian cancer samples by comparing the
expression levels of 34 verified transcriptional targets of CREB118

against the background expression of all other genes on the

microarray using the single sample gene set enrichment analysis
methodology.19 We found that CREB1 activity was significantly (P-
value ⩽0.03) associated with the cAMP activity as inferred by InFlo
(Figure 3e). Furthermore, the higher InFlo-inferred cAMP activity was
not trivially explained by other factors that regulate cAMP
production, hydrolysis and/or PKA expression (Supplementary
Figure S4). Taken together, these findings provide orthogonal
validation of InFlo’s inference of cAMP activity modulation via the
Class IB PI3K non-lipid kinase events pathway, thus suggesting high
cAMP activity in HGSOC is a likely mechanism of platinum resistance
(Figure 3f), which we next proceeded to validate experimentally.

Figure 2. Robustness assessment of InFlo. (a) The double-loop cross-validation framework used to assess the robustness of algorithms in
identifying pathways associated with ER status in breast cancer. For each iteration of the outer loop, the inner loop further subdivides the
discovery group into training and testing datasets over 100 independent permutations, while maintaining the relative frequencies of ER+
versus ER– samples. For each algorithm, per iteration, pathways that are ranked in the top-20 by the Silhouette measure in both the training
and testing datasets are denoted as putatively discriminative of ER status. The frequency with which a pathway is discriminative of ER status
over the 100 iterations of the inner loop is a measure of its robustness. A putative discriminative pathway reported by the internal loop that is
also ranked among the top-20 pathways in the outer loop evaluation dataset is considered to be validated. Otherwise, the putative
discriminative pathway is deemed a false positive. An algorithm that identifies more validated pathways is considered superior in terms of
sensitivity, with superior specificity associated with lower false positives. (b) The mean (solid lines) and standard-deviation (transparent bands)
estimates of the number of putative ER-discriminative pathways as a function of how frequently they were observed within the discovery
loop. The individual algorithms are denoted in green (InFlo), red (PathOlogist) and blue (PARADIGM). (c) The mean and standard deviation
estimates of the number of ER-discriminative pathways that validated in the evaluation dataset as a function of how frequently they were
observed within the discovery loop. (d) The receiver operating characteristics curves for each of the algorithms. The true positive rate is
plotted against the false positive rate by varying the silhouette threshold to select pathways discriminative of ER status.
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Inhibition of cAMP activity reverses platinum resistance in ovarian
cancer cells
Based on InFlo’s analysis, we hypothesized that CREB1 activity is
required to maintain drug resistance and survival in platinum-
resistant HGSOC cells, and thus inhibiting CREB1 activity should
potentially result in decreased survival of platinum-resistant cells.
Thus, we set out to validate InFlo’s novel finding using primary
HGSOC patient-derived platinum-resistant cells (OV81.2-CP10) as
well as platinum-resistant ovarian tumour-initiating cells (TICs)
(ALDHpos CP70) isolated from the platinum-resistant cell line,
A2780-CP70.20 Given the growing evidence suggesting that
platinum-based therapies are very efficient at eradicating differ-
entiated cancer cells but are unable to effectively eliminate TICs,
this allowed us to assess whether PKA inhibition would also be
able to eradicate this subpopulation of cells.21–23

We began by directly measuring cAMP levels in non-
transformed fallopian tube epithelial cells (FTSE), ovarian surface
epithelial cells (IOSE), OV81.2-CP10 and ALDHPOS CP70 cells. cAMP
concentrations were significantly upregulated in both platinum-
resistant cells compared to the non-transformed cell lines
(Figure 4a). Next, in order to determine whether inhibition of
CREB1 would induce cell death inthe platinum-resistant cells we
utilized the H-89 inhibitor, which has been shown to inhibit the
phosphorylation of CREB1 at Ser-133 by PKA.24 We first confirmed
that H-89 inhibits activity of CREB1 in both platinum-resistant
OV81.2-CP10 and ALDHpos CP70 cells. H-89 treatment antagonized
the increase in phospho-Ser 133-CREB1 induced upon cAMP-PKA
axis activation by the cAMP agonist forskolin, thus confirming that
H-89 inhibits CREB1 activity (Figures 4b and c). In turn, H-89
robustly decreased the survival of the platinum-resistant OV81.2-
CP10 and ALDHpos CP70 cells (Figures 4d and e). In addition, cell
cycle analysis revealed that H-89 induced G2-M cell cycle arrest
(Figure 4f). Given that ovarian tumour cells are reported to grow as
spheroids under non-adherent culture conditions and these
tumour spheres constitute various aspects of ovarian cancer
pathology including stem-like properties, metastasis, drug resis-
tance and tumour recurrence, we also assessed the ability of H-89
to eradicate these ovarian TICs under stem-like culture conditions.
H-89 significantly reduced tumour sphere formation in both
OV81.2-CP10 and ALDHpos CP70 cells (Figure 4g).
Next, we found that the combination of H-89 and cisplatin

resulted in significantly greater cell death as compared to
treatment with single agents alone (Figure 5). 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis of H-89
and cisplatin combination treatment in OV81.2-CP10 and ALDHpos

CP70 cells showed a significant decrease in the IC50 of cisplatin
upon combining with H-89 (Figure 5a). Furthermore, Annexin-V
analysis revealed that the increase in apoptosis induced by the

combination was significantly higher compared to H-89 or
cisplatin alone in both OV81.2-CP10 and ALDHposCP70 TICs, which
correlated with decreased p-CREB1 protein levels (in both OV81.2-
CP10 and ALDHposCP70 TICs) and increased cleaved caspase-3
protein level in ALDHposCP70 TICs (Figure 5b), suggesting that
inhibiting CREB1 activity could potentially synergize with cisplatin
therapy by eradicating ovarian adherent and TICs. Overall, our
results show that H-89 decreases survival of platinum-resistant
ovarian tumour cells in both adherent and non-adherent stem-like
conditions, thus experimentally validating InFlo’s assessment that
high activity of the cAMP-CREB1 axis is associated with low
progression-free survival in HGSOC.

DISCUSSION
We have developed a novel systems biology framework, InFlo,
which infers deregulation of pathway subnetworks in individual
biological samples by integrating genomic profiling data with
detailed regulatory information derived from pathway network
annotations. InFlo generates probabilistic models of activities of
signalling network interactions on a per-sample basis. We
showed that InFlo exhibited higher sensitivity and specificity
in detecting pathways associated with disease phenotypes as
compared to published pathway network modelling
approaches. We then applied InFlo to identify pathways
associated with progression-free survival in HGSOC, and showed
that tumours with high cAMP activity have low progression-free
survival. We confirmed InFlo’s inference of cAMP activity by
assessing the expression levels of downstream transcriptional
targets of CREB1, a well-known key mediator of cAMP activity.
Finally, we experimentally validated this novel finding using
platinum-resistant cell line models of HGSOC, although further
studies confirming our findings using in vivo platinum-resistant
HGSOC PDX models are necessary to validate the efficacy of this
combination therapy.
A key insight in the development of the InFlo framework is the

evaluation of the consistency between InFlo’s predicted interac-
tion activity and the activity of the gene regulated by the
interaction (Figure 1, Step E). InFlo utilizes this consistency check
to exclude interaction states that are inconsistent with the
pathway definition with a small probability, thus essentially de-
noising the information flow vectors that define the pathway
activity in a given tumour sample. We evaluated the contribution
of this key step of InFlo by excluding this key step while deriving
the information flow interaction vectors for the pathways and
then evaluating their association with progression-free survival in
the TCGA HGSOC dataset. We find that the pathways that were
previously found to be significantly associated with progression-

Table 1. Pathways associated with progression-free survival after platinum-therapy in the TCGA high-grade serous ovarian carcinoma dataset

Pathway Significance of survival
difference (P-value)

Significance of pathway’s Cox coefficient in
multivariable setting (P-value)

Number of
entities in
pathway

Identified by
PathOlogist or
PARADIGM

Class IB PI3K non-lipid kinase events 0.001 0.016 6 No
Regulation of p38-alpha and p38-beta 0.006 0.019 19 No
PDGFR-beta signalling pathway 0.02 0.084 95 No
Glypican 1 network 0.028 0.059 17 Yes
Insulin-mediated glucose transport 0.033 0.21 15 Yes
Plasma membrane estrogen receptor
signalling

0.05 0.084 34 No

Arf6 downstream pathway 0.05 0.09 16 No

The significance of each pathway’s ability to stratify patients based on progression-free survival was calculated using the Mantel–Haenszel test. Additionally,
the association of each pathway with progression-free survival was also evaluated using a multivariable Cox proportional hazards model by controlling for
tumour stage, tumour grade, age at diagnosis and extent of residual disease at surgery.
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Figure 3. InFlo-based association of the cAMP-PKA-CREB1 axis with progression-free survival in HGSOC. (a) Hierarchical clustering of TCGA
HGSOC samples (N= 357) using the InFlo-estimated activities of pathway interactions by integrating gene expression and copy-number
profiles of genes in the pathway. Rows correspond to InFlo-estimated activity of interactions and columns denote individual tumour samples.
The major clusters identified are indicated by pink (High cAMP), grey and green (Low cAMP). (b) Platinum-based progression-free survival of
HGSOC patients in each of the clusters. Difference in progression-free survival between High cAMP and Low cAMP clusters (Mantel–Haenszel
test P-value⩽ 0.001), remained statistically significant (significance of multivariable Cox regression coefficient, P-value= 0.016) even after
controlling for tumour stage, tumour grade, age at diagnosis and extent of residual disease at surgery. (c) Pathway interaction activities across
ovarian tumours, organized according to the pathway network structure, are plotted per sample in each of the two major clusters. Each ray in
the individual ray graphs denotes the InFlo-estimated activity of the pathway interaction in an individual ovarian tumour sample. (d) The
cAMP-PKA-CREB1 signalling axis. (e) CREB1 activity distribution estimated using 34 known transcriptional targets of CREB1 plotted across
InFlo-inferred cAMP activity groups. No discernable difference in PI3K Class IB kinase expression was observed between the Low and high
cAMP activity groups (Supplementary Figure S5). Low and high cAMP activity groups correspond to samples with InFlo activity scores ⩽− 0.25
and ⩾ 0.25, respectively. (f) InFlo-derived model of high cAMP activity as a likely mechanism of platinum resistance in HGSOC.
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free survival are no longer significant, while biologically unlikely
pathways are now found to be significant (Supplementary Table
S6). We also evaluated the stability of estimation of the joint
probability distribution of interaction activities for each patient
sample in a particular pathway (Figure 1, Step E) by varying the
number of information flow vectors generated per pathway and

patient sample in the TCGA HGSOC dataset from 100 to 1000 and
found no significant changes in pathways associated with
progression-free survival (Supplementary Table S7).
Taken together, these findings underscore InFlo’s ability to

extract biologically meaningful information by integrating and
denoising multi-omics genomic profiling data using regulatory

Figure 4. Functional assessment of the role of cAMP axis in HGSOC platinum-resistant models. (a) cAMP assay showing increased cAMP
concentrations in OV81.2-CP10 and ALDHpos CP70 cells as compared to non-transformed FTSE and IOSE cells in response to 30 min
stimulation by 20 μM forskolin. Values are plotted as differences in relative luciferase units (ΔRLU), which is indicative of cAMP concentration
(b) Flow cytometry analysis and (c) western blotting showing H-89 (20 μM-30 min) decreases phosphorylation of CREB1 at ser-133 residue
either uninduced or induced in response to forskolin (20 μM-15 min) in both OV81.2-CP10 and ALDHpos CP70 cells. (d) 48-h MTT assay showing
H-89 decreases viability in both OV81.2-CP10 and ALDHpos CP70 cells. (e) Clonogenics assay on day 7 showing decreased survival in response
to H-89 treatment in these cells. The individual wells treated with H-89 and DMSO control are shown for both OV81.2-CP10 and ALDHposCP70
cells after 7 days of treatment (top row). The bar graphs represent the mean number of colonies in the H-89 treatment versus DMSO control
for both cell types (bottom row). (f) 48-h cell cycle analysis by propidium iodide staining shows that H-89 induces G2-M transition arrest in
OV81.2-CP10 and ALDHpos CP70 cells. Bar graphs represent the mean percentage of cells in cell cycle phases. (g) 10 × light microscopy and
10× 10 integrated metamorph software analysis showing decreased tumour sphere formation by day 6 upon H-89 treatment in OV81.2-CP10
and ALDHpos CP70 cells. Bar graphs represent the mean fold-change in number of tumour spheres upon treatment with H-89 as compared to
control. (All mean values were estimated over three independent replicates, with the error bars representing standard errors of the mean, with
the Student's t-test significance denoted as *P < 0.05, **P < 0.005, ***P < 0.0005).
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information obtained from pathway network annotations. We
propose InFlo as a robust systems biology approach for
integrative analysis of multi-omics data to characterize complex
biological signalling network activities in any given biological
sample. InFlo has been implemented as a modular and scalable
computational platform to integrate multi-omics profiles
(Supplementary Figure S6) in a computationally efficient
manner, thus delineating genome scale pathway network
activities. Additionally, the inconsistency check incorporated
within InFlo can also be used to potentially estimate the
functional impact of somatic mutations on downstream targets
of pathways. We expect InFlo to be widely applicable to reliably
delineate key molecular determinants of disease progression,
thus enabling the discovery of evidence-based biomarkers and
therapeutic targets, as well as for facilitating selection of tailored
therapies in individual patients.

MATERIALS AND METHODS
The Cancer Genome Atlas datasets
Level 3 RMA-normalized gene expression data and somatic copy-
number profiles25,26 were obtained for breast (N= 301) and
ovarian (N= 357) cancer samples from TCGA portal (https://tcga-
data.nci.nih.gov/tcga/). All TCGA data were used in accordance
with TCGA policies.

Identification of pathways discriminative of ER status in the TCGA
breast cancer dataset
The breast cancer dataset was processed using InFlo, PathOlogist
and PARADIGM according to their individual requirements as
follows. The PathOlogist7 and PARADIGM6 frameworks were run
using default parameters according to the instructions provided
by the developers. Of note, PathOlogist only accepts gene

Figure 5. Effects of H-89 and cisplatin combination treatment in HGSOC platinum-resistant cells. (a) 48-h MTT analysis of H-89 and cisplatin
combination treatment in OV81.2-CP10 (left) and ALDHpos CP70 (right) cells showing decrease in cisplatin IC50 in these cells upon combining
with H-89. Plotted are the mean fold-changes in cell viability across varying concentrations of cisplatin alone and in combination with H-89.
(b) Annexin-PI staining (48 h) and western blotting (24 h) showing that H-89 and cisplatin combo induces significantly higher cell death in
both OV81.2-CP10 and ALDHpos CP70 (Annexin-PI) and decreases p-CREB1 protein levels in both OV81.2-CP10 and ALDHpos CP70 (western
blotting) and increases cleaved caspase-3 protein levels in ALDHpos CP70 (western blotting) as compared to individual drugs alone. (All mean
values were estimated over three independent replicates, with the error bars representing standard errors of the mean, with the Student’s
t-test significance denoted as ***Po0.0005).
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expression data as input and generated two scores (activation and
consistency) per pathway, resulting in a two-element vector for
each pathway, which was used to compute intersample distances,
using the Euclidean distance measure. PARADIGM accepts both
gene expression and copy-number data on a per-gene level and
generates integrated pathway activity levels for each component
of a given biological pathway network in a given breast cancer
sample. Accordingly, intersample distances was computed as the
Euclidean distance between the vectors representing the inte-
grated pathway activity levels of all of the components of the
given pathway. InFlo was run according to the details provided in
the description of the algorithm. All three computational frame-
works were run on the same set of 183 curated pathways
downloaded from the NCI-PID, Reactome and KEGG pathway
databases. For each algorithm, a pathway’s ability to discriminate
ER status in breast cancer was estimated by using the Silhouette
measure27 based on the algorithm-derived pairwise distances
within ER+ or ER− samples (intra-cluster) and between ER+ and
ER− samples (inter-cluster).

Cell culture and reagents
Ovarian cancer cell lines were maintained in culture as previously
described20 and tested for mycoplasma contamination. Platinum-
resistant HGSOC PDX derived OV81.2-CP10 cells were generated
and maintained as previously described.20 Cisplatin was pur-
chased from Mount Sinai Hospital Pharmacy (New York, NY, USA).
10 mM stock solutions of H-89 (Tocris Biosciences, Minneapolis,
MN, USA) were prepared in DMSO (Fisher Scientific, Pittsburgh, PA,
USA) and stored at − 20 °C.

Flow cytometry analysis
For phospho-Ser-133 flow cytometry analysis, phospho-Ser-133-
Alexa flour 488 conjugate (Cell Signaling Technology Inc., Danvers,
MA, USA) and forskolin (Tocris Biosciences) was used and the data
were acquired by Coulter Epics XL machine (Beckman Coulter Inc.,
Brea, CA, USA). ALDHpos CP70 cells were sorted from CP70 cell line as
previously described.20 Cell viability (MTT) assays, clonogenic assays,
cell cycle assessment, Annexin V assays and tumour sphere
formation assays were performed as previously described.20

Western blotting
p-CREB1(1:250), cleaved caspase-3(1:250), cleaved PARP(1:250)
and vinculin (1:500) were purchased from (Cell Signaling
Technology Inc.) and immunoblotting was done as previously
described.20

cAMP assay
cAMP concentrations in response to forskolin stimulation were
measured by cAMP-Glo assay kit (Promega Corporation, Madison,
WI, USA) and the values were plotted as difference in relative
luciferase units (RLU) between untreated and treated samples,
which is indicative of cAMP concentration in the cells.

Availability of data and materials
InFlo is implemented in C++ along with a collection of shell scripts
to enable easy application of the algorithm on new datasets, and
is available for academic use. InFlo is available for download from
GitHub at http://varadanlab.github.io/InFlo/. Additionally, we have
used InFlo to integrate pan-cancer multi-omics datasets from the
TCGA and have provided the results as a resource for the
community at http://varadanlab.org/InFlo.
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