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Abstract—Estimation of a binary source using multiple ob-
servers, a variant of the so called Chief Executive Officer
(CEO) problem, is considered. A low-complexity Distributed
Joint Source Channel Coding (D-JSCC) based on the Parallel
Concatenated Convolutional Codes (PCCC) is implemented in a
cluster of sensors in a distributed fashion. Convergence of the
iterative decoder is analyzed by utilizing EXtrinsic Information
Transfer (EXIT) chart technique to determine the convergence
region in terms of the sensors observation accuracy and channel
SNR, where the iterative decoder outperforms the non-iterative
one.

This leads to design of a bi-modal decoder that adaptively
switches between the iterative and non-iterative modes in or-
der to avoid inefficient iterative information exchange without
compromising the resulting Bit Error Rate (BER). This adaptive
decoding algorithm saves the computational power and decoding
time by a factor of about 10 by avoiding unnecessary iterations.

Index Terms—Algorithm design, binary CEO problem, con-
vergence analysis, iterative decoding, distributed turbo codes.

I. INTRODUCTION

IN indirect Multi Terminal (MT) coding, when the cor-
relation among transmitters data streams is due to the

multiple observations of a common source, the compression
of correlated sources reduces to the special case of Chief
Executive Officer (CEO) Problem [1].

This problem has been thoroughly studied from
information-theoretic perspective. The first inner and
outer bounds for the rate-distortion region is derived in [2]
based on quantization and binning concept. Recently, new
advances are reported that tighten these performance bounds
and determine the rate-distortion region for more generalized
cases [3], [4], [5].

The demand for practical MT code design is recently
emphasized, since it applies to an important class of Wireless
Sensor Networks (WSN), where no sensor can be deployed
at the exact data source location due to harsh physical or
environmental conditions [6].

The first practical implementation of Distributed Source
Codes (DSC) is Distributed Source Coding Using Syndromes
(DISCUS) with the idea of successive decoding at the desti-
nation [7]. One shortcoming of this approach is that it only
works in the corner points of the rate region corresponding
to a full compression for one node and less for the others.

This work is financially sponsored by National Aeronautics and Space
Administration (NASA), under grant No. EP11055404916. This work is
presented in part at the 46th Annual Conference on Information Sciences
and Systems (CISS’ 12).

The authors are with Wireless Sensor Networks Laboratory (WiSe-Net) at
the Department of Electrical and Computer Engineering, University of Maine,
Orono, ME, 04469 USA (e-mail: {abolfazl.razi, ali.abedi}@maine.edu).

Therefore, sensors have different coding rates, which is not
desired in homogeneous WSN design.

Low Density Parity Check (LDPC) codes are employed
based on the syndrome concept to eliminate this drawback and
enable flexible coding for the whole Slepian-Wolf rate region
using time sharing methods. In LDPC based codes, compres-
sion is achieved by using parity check matrix at the encoder
to generate syndromes [8]. However, this scheme suffers from
the error propagation phenomenon in noisy wireless channels,
since successive decoding is very sensitive to syndrome errors.

A different scheme using punctured parity bits of LDPC
codes is proposed in [9] to combat the error propagation
problem. However, this approach performs a little away from
the theoretical limits and does not fully extract the correlation
among sensors. This is due to the fact that the correlation
model is only used in the initialization of the Belief Propaga-
tion (BP) decoding algorithm and thereafter, each constituent
decoder performs individually, which is not appropriate for the
common source reconstruction problem.

One important advantage of using channel codes for DSC
is that they can be combined with the channel coding stage to
implement Distributed Joint Source Channel Codes (D-JSCC),
which further simplifies sensor structures. Recently, Irregular
Repeat Accumulate (IRA) and Turbo codes are proposed to
combine decoding with data fusion functionality as a practical
solution for the CEO problem [10], [11], [12]. In distributed
turbo codes, compression is achieved through heavy punctur-
ing after coding [13], [14], puncturing before coding [15]
or using high rate convolutional encoders [16], [17]. The
main drawback in using both distributed turbo codes and
LDPC codes is their limited scalability to a large number of
encoders due to using joint graph for many complex decoders
cooperating with one another. This limits their applicability in
WSNs with poor observations (e.g. remote sensing), where
a large number of sensors is required to secure a desired
reliability.

In [18], a convolutional based D-JSCC with a single iter-
ative decoder is proposed for two correlated sensors, where
one sensor has complete observation accuracy and the other
provides side information. The authors proposed a similar
coding scheme in [19] for an arbitrary number of sensors,
where each sensor has an incomplete observation. A modified
parallel-structure Multiple Turbo Decoder (MTD) is designed
considering the inaccuracy of sensors observations and a new
technique is proposed to estimate the observation accuracy of
sensors from the received data. A power optimized Distributed
Space Time Block Code (D-STBC) assisted multiple relaying
method is proposed in [20] to extend this solution to a more
general class of clustered networks.
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The common spirit of most D-JSCC solutions for the
CEO problem is to employ iterative decoding to eliminate
transmission errors followed by a majority vote to exploit the
correlation among various observation sequences. There is an
essential trade-off for the amount of correlation sent to the
receiver. The larger the correlation among the codewords, the
more enhanced the source coding efficiency. However, this
larger correlation deteriorates the channel coding efficiency
by lowering the minimum distance. This internal trade-off
was considered by the former researchers (such as authors
of [21], [22]) and is addressed through balancing the two
contradictory needs. For instance, employing interleaver block
after encoder or using Low Density Generator Matix (LDGM)
codes are proposed to increase the correlation among the
codewords, which negatively affects the error recovery in low
SNR regime [21], [22].

In this work, we study this problem from a different
perspective and change the dilemma of “How much correlation
to be sent?” to “When and how much correlation to use in
the decoder?”. In other words, we reevaluate the usefulness
of iterative exchange of soft information among constituent
decoders, when a turbo-based decoder is used to estimate
a common binary source from multiple coded observations.
In fact, decoding improvement through iterations is shown
to be highly dependent on the system quality factors. It is
noteworthy that the inefficiency of iterative decoding in some
situations was observed by former researchers [23], [15], but
to the best of our knowledge no comprehensive study has been
conducted to identify and prevent these situations.

We develop a new convergence analysis based on EXtrinsic
Information Transfer (EXIT) charts to define convergence
region in terms of the sensors observation accuracies and
SNR level, in which the consecutive iterations are useful. This
approach leads to design a bi-modal decoder that adaptively
switches between two iterative and non-iterative decoding
modes based on the current channel conditions. When switch-
ing to the non-iterative mode, the decoding complexity and
decoding delay is significantly reduced by avoiding unneces-
sary iterations.

The rest of this paper is organized as follows. In Section II,
the system model is defined. Section III elaborates on the
coding scheme that is applied to the system. In Section IV,
EXIT chart analysis is utilized to analyze the convergence
of the iterative decoder in terms of the channel quality and
observation model. Simulation results are provided in Section
V to verify the proposed mode selection criterion followed by
concluding remarks in Section VI.

II. SYSTEM MODEL

In the system model depicted in Fig. 1, a single source
is indirectly observed by a cluster of sensors. The sensors
collectively transmit their observations through orthogonal real
valued AWGN channels to the fusion center. Most practical
systems use orthogonal transmissions such as TDMA and
FDMA for complexity considerations. Therefore, it is a widely
accepted assumption in majority of practical coding designs
for sensors with correlated data, including works in [9], [10],

Fig. 1. System model: D-PCCC scheme is used to estimate a binary data
source observed by multiple sensors.

[11], [12], [18]. However, orthogonal transmission is not
optimal in general [24]. The proposed coding scheme is not
dependent on the Multiple Access (MA) scheme and any MA
scheme including CDMA can be used after coding stage at
the cost of higher complexity. Before elaborating the details
of the system, we define the following notations.

Capital letters are used for Random Variables (RV), lower
case letters for the realization of RVs, and bold-face letters
for vectors and matrices. Operation x̄ = 1 ⊕ x is used to
show bit flipping of a binary value x, where ⊕ is modulo-
2 addition. H(X) and h(Y ) are used to denote the entropy
and differential entropy of discrete RV (X) and continuous
valued RV (Y ). The standard notation of I(X;Y ) is used for
the Bitwise Mutual Information (BMI), which is the mutual
information between a Log Likelihood Ratio (LLR) and the
corresponding source bit averaged over the whole frame [25],
[26]. The logarithms are e-based that provides the resulting
information quantities in terms of nat unless noted otherwise.

The source data is assumed to be an independent identically
distributed (i.i.d) equiprobable binary sequence {S(n)}∞n=1.
The observations of sensor i denoted as Ui is modeled as
the source data passed through a virtual BSC channel with
crossover probability βi ≤ 0.5. Thus, Ui(n) = S(n)⊕ Zi(n),
where Zi(n) is i.i.d Bernoulli distributed observation error
signal with

p
(
Zi(n) = 1

)
= 1− p

(
Zi(n) = 0

)
= βi. (1)

Parameter βi and β̄i = 1 − βi are called observation error
and accuracy, respectively. The observation errors of different
sensors are independent of the source and are mutually inde-
pendent as well. This method is commonly used to model the
observation accuracy of binary source observers.1

The observation of two sensors are conditionally indepen-
dent given source data value, hence {Ui(n) → S(n) →
Uj(n)} forms a Markov chain for i 6= j. Also, we assume
equal observation error βi = β for notation simplicity, since
the extension to the unequal observation error is straightfor-
ward. The pairwise crossover probability between the observa-

1In fact, in most applications with an arbitrary set of source distribution,
quantization method, and observation error model, the observed data is
ultimately digitized prior to transmission. Therefore, the observation error can
be translated into bit flipping of a binary data. If one could find an upper bound
on the probability of bit flipping, it can be used as an asymptotic model to
describe the observation inaccuracy. Hence, the virtual BSC channel becomes
a general model to present the observation inaccuracy of sensors, at least as
an asymptotic analysis [10].
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tions of sensors i and j is defined as βij = p(Ui(n) 6= Uj(n)),
which is simply obtained as

βij = βi + βj − 2βiβj = 2β − β2. (2)

III. CODING SCHEME

In this section, the coding scheme along with the proposed
decoder is described.

A. PCCC Based Distributed Coding

The proposed D-JSCC is based on the parallel concatenation
of convolutional codes (PCCC). The main difference between
the proposed approach with the commonly used Distributed
Turbo Codes (DTC) is that in DTC, a turbo encoder is
implemented at each sensor [13]; while, we embed one Recur-
sive Systematic Convolutional (RSC) encoder at each sensor
and these encoders altogether realize a single turbo encoder.
Hence, only one improved MTD based decoder is employed
at the receiver, which makes the decoder less complex.

The system is composed of N sensors. At each sensor, the
M-bit observed data sequence ui = {ui(n)}Mn=1 is encoded
using an RSC encoder. The resulting systematic and parity bits
are punctured to yield the output frames vi = {vi(n)}M/Ri

n=1 ,
where Ri is the desired coding rate per sensor. The punctured
output frame vi is mapped to the BPSK symbols xi, using
xi(n) = 2vi(n)− 1, hence xi(n) ∈ X = {−1,+1}.

In the first sensor, odd systematic bits and even parity bits
are sent by puncturing half of the bits. We switch this pattern
for the next sensor and continue this alternatively.

It was noticed that sending more parity bits slightly im-
proves the BER performance. Therefore, we modified punc-
turing method for N > 4, such that 1/4 and 3/4 of transmit
bits at any sensor are allocated to systematic and parity bits,
respectively.

The data is interleaved using a pseudo random block
interleaver Πi prior to encoding to increase the minimum
distance of the resulting multi-frame. The combination of
the output frames forms a turbo-like multi-frame x =
[x1,x2, ...,xN ]. The received multi-frame at the decoder is
y = [y1,y2, ...,yN ], where yi = {yi(n)}M/Ri

n=1 .
We denote the transmit symbol of an arbitrary sensor by

RV X ∈ X = {−1, 1} by omitting the time index n and
position index i. If Z ∼ N (0, σ2

N ) is the equivalent noise
term at the receiver, then the received symbol Y = X + Z
has obviously the following Gaussian conditional probability
density function (pdf):

pY |X(y|x) =
1√

2πσN
exp(− (y − x)2

2σ2
N

). (3)

B. MTD Based Decoder Structure

Inspired by the encoder structure, a MTD based decoder is
employed at the receiver to decode the received multi-frame y.
As in Fig. 2, the decoder consists of Soft-Input Soft-Output
(SISO) constituent decoders, each corresponding to an RSC
encoder. In this work, the frames corresponding to different
RSC encoders might differ by a few bits and word error

Fig. 2. Proposed bi-modal MTD decoder with observation accuracy estimation
block. In non-iterative mode, the switch is in position M1.

is unavoidable, hence symbol based BCJR-MAP decoding
algorithm is preferred over Soft Output Viterbi Algorithm
(SOVA) [27]. The LLRs for the deinterleaved systematic
bits are calculated as LYi(n) = log(p(Xi(n)=+1|Yi(n))

p(Xi(n)=−1|Yi(n) ) =

2(Es/N0)Yi(n) for real valued AWGN channel with SNR=
Es/N0 [28]. This initialization of input LLRs are used in
one of the following decoding modes. The mode selection
approach is presented in section IV.

1) Non-Iterative Mode: In this mode, shown by M1 in
Fig. 2, the SISO decoders initialize the a priori LLRs denoted
by A with the LLRs of the received systematic bits Ai(n) =
LYi(n). Then, the decoders decode the received parity bits
to provide output LLRs Di(n) = log(p(Ui(n)=1|Yi)

p(Ui(n)=0|Yi)
). Then,

applying the same correlation model between the source and
observation bits defined in (1), the a posteriori likelihood of
the source bits defined as Ds,i(n) = log(p(S(n)=1|Yi)

p(S(n)=0|Yi)
) are

provided by each constituent decoder as follows:

Ds,i(n) = log
(p(S(n) = 1|Yi)

p(S(n) = 0|Yi)

)
= log

(βp(Ui(n) = 0|Yi) + (1− β)p(Ui(n) = 1|Yi)

(1− β)p(Ui(n) = 0|Yi) + βp(Ui(n) = 1|Yi)

)
= log

(β + (1− β)p(Ui(n)=1|Yi)
p(Ui(n)=0|Yi)

(1− β) + β p(Ui(n)=1|Yi)
p(Ui(n)=0|Yi)

)
= log

(β + (1− β)eDi(n)

(1− β) + βeDi(n)
)

= gβ
(
Di(n)

)
, (4)

where we call gβ(x) = log β+(1−β)ex
(1−β)+βex as the scaling function

and use it frequently throughout this paper. It is easy to check
that gβ(x) is a monotonically increasing function of x for
β < 0.5. The second equality in (4) follows from Markov
chain property as

p(S(n) = 1|Yi) =
∑
u=0,1

p(S(n) = 1, Ui(n) = u|Yi)

=
∑
u=0,1

p(Ui(n) = u|Yi)p(S(n) = 1|Ui(n) = u,Yi)

=
∑
u=0,1

p(Ui(n) = u|Yi)p(S(n) = 1|Ui(n) = u)

= βp(Ui(n) = 0|Yi) + (1− β)p(Ui(n) = 1|Yi).
(5)

Finally, Maximum Likelihood Detection (MLD) is applied
to provide an estimate of the source data, ŝ(n). The MLD, for



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 4

the case of equal sensor observation error is reduced to the
sum operation followed by a hard limiter as follows:

ŝ(n) = 0.5
(
1 + sgn

( N∑
i=1

Ds,i(n)
))
. (6)

2) Iterative Mode: In this mode, the decoding is performed
in consecutive iterations. The first iteration is the same as
of the non-iterative decoder. The main difference is that
the constituent decoders exchange soft information with one
another at the end of each iteration. There are different LLR
exchange structures including serial, master-slave and parallel.
We choose the parallel structure due to its superior BER
performance and fast convergence properties [29].

The extrinsic LLRs of decoder j at iteration r, (E
(r)
j ) is

scaled down with the observation error parameter β to provide
new LLRs of the source bits (E

(r)
s,j ). Then, the summation

of these modified extrinsic LLRs for all constituent decoders
except decoder i is summed to generate a priori LLRs for
decoder i at the next iteration r + 1, (A

(r+1)
s,i ). To make the

input LLRs consistent with the received symbols, we further
scale down these input LLRs to obtain (A

(r+1)
i ) as follows:

E
(r)
s,j = gβ(E

(r)
j ),

A
(r+1)
s,i = E

c(r)
i =

N∑
j=1
j 6=i

E
(r)
s,j ,

A
(r+1)
i = gβ(A

(r+1)
s,i ) = gβ

( N∑
j=1
j 6=i

gβ(E
(r)
j )
)
, (7)

where A
(r)
i and E

(r)
i are a priori and extrinsic LLRs of

decoder i at iteration r, respectively. Subscript s declares
that the likelihood is with respect to the source bits after
the relevant scaling. Ec(r)s,i denotes the effective extrinsic LLR
which is applied as a priori LLR to decoder i after proper
scaling in the next iteration. The sequence of LLR change is
depicted in Fig. 3. Note that for special case of two sensors
(N = 2), (7) reduces to:

A
(r+1)
i = gβ

(
gβ(E

(r)
j )
)
, i, j ∈ {1, 2}, i 6= j. (8)

It is easy to see that fβ(fβ(.)) = f2β(1−β)(.) = fβij (.).
Therefore the LLR scaling in (8) from one constituent decoder
to another is equivalent to the pairwise correlation between the
two sensors, which verifies (7).

If β is known, it can be directly used in (4) and (7).
Otherwise, we use the following estimation at the end of
the first iteration. The pairwise correlation parameter between
every two consecutive sensors is calculated as in (9). Then,
noting βi,j = 2β − β2, the observation error parameter is
found according to (10).

Fig. 3. LLR exchange sequence in the decoder.

β̂i,i+1 =
1

2M

M∑
n=1

|sgn
(
Di(n)

)
− sgn

(
Di+1(n)

)
|,

i = 1, 2, .., N − 1. (9)

β̂ij =
1

N − 1

N−1∑
i=1

β̂i,i+1

⇒ β̂ =

√
1 + β̂ij − 1 ≈ 1

2(N − 1)

N−1∑
i=1

β̂i,i+1. (10)

It is shown in [30], that the variance of β̂ is inversely pro-
portional to the number of symbols in a frame, M . Therefore,
it provides an accurate estimate for fairly large frame sizes.

The iterative exchange of information among constituent
decoders is repeated for a predetermined number of iterations,
which is typically between 10 to 20. At the end of the last
iteration, the source bits are estimated according to (6).

IV. EXIT CHART ANALYSIS FOR MTD

EXIT charts are widely used to examine turbo decoder
convergence, that shows how mutual information of LLRs
with respect to the source bits are evolved in consecutive
iterations [31], [26]. In this work, we apply EXIT chart
analysis to the proposed decoder with some modifications
based on the system model.

A procedure to derive EXIT charts for a parallel structure
classical MTD is presented in [32]. This does not apply to
our case, where the outputs of constituent decoders naturally
tend to converge to the corresponding observation bit sequence
rather than converging to the common data source sequence.
Consequently, the iterative exchange of information among
constituent decoders is useful only if the a priori information
gets closer to the common data source through constituent
decoder operation. The two comparison points are marked P1
and P2 in Fig. 2. Considering this fact, a modified EXIT chart
based on BMI is proposed in this section.

A. EXIT Chart Definition for Distributed Coding

For BCJR Log-MAP decoding algorithm, we can focus on
the symbol wise analysis by omitting the time index based
on commonly accepted assumption of similar behavior for
all bits regardless of their position in the sequence [25],
[26]. Moreover, considering the pseudorandom interleavers
and independence of the channels, the input LLRs of the
constituent decoders experience independent distortion.
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Based on (3) and following some mathematical manipu-
lations as in [33], it can be shown that the obtained LLRs,
LY = log p(X=+1|Y )

p(X=−1|Y ) are Gaussian RVs with mean µYX and
variance σ2

Y as:

LY = µYX + nY ,

nY ∼ N (0, σ2
Y ), σ2

Y = 2µY = 4/σ2
N . (11)

It is noteworthy that higher values of σY provide higher
certainty. For a Gaussian RV with mean µ and variance σ2,
the error probability is calculated as Q(µ/σ), where µY

σY
=

1
2σY is called LLR SNR. Since Q(x) = 1√

2π

∫∞
t=x

e−t
2

dt is
a monotonically decreasing function of x, higher µ/σ values
yield lower error probability and hence higher certainty.

It has been shown that if both channel observations and
input LLRs follow Gaussian distribution, in a MAP-family
decoder with fairly large frame lengths, the extrinsic LLRs also
tend to Gaussian distribution [34]. The intuitive justification
is based on applying the weak law of large numbers to the
summations over the random like decoder trellis structure.
Moreover, extensive simulations confirm that relation (11)
holds for the extrinsic LLRs as well [33]. Consequently, both
input and extrinsic LLRs, A and E, can be written in the
following format:

A = µAX + nA , nA ∼ N (0, σ2
A) , µA = σ2

A/2. (12)

E = µEX + nE , nE ∼ N (0, σ2
E) , µE = σ2

E/2. (13)

If V and Xi are BPSK versions of the source bit S and
observation bit Ui, we have

V = 2S − 1

Xi = 2Ui − 1

}
, (X,V ∈ {−1,+1})⇒

p(X = −V ) = 1− p(X = V ) = β. (14)

The conditional pdf of input LLR, A is

pA(ζ|x) =
1√

2πσA
exp

(
− (ζ − µAx)2

2σ2
A

)
. (15)

RVs A and V are conditionally independent given X; hence
{V → X → A} forms a Markov chain and we have

pA(ζ|v) =
∑

x=−1,1
pA(ζ|x)p(x|v)

=
1√

2πσA

[
β̄e
− (ζ−µAv)

2

2σ2
A + βe

− (ζ+µAv)
2

2σ2
A

]
. (16)

This conditional pdf is corresponding to a Gaussian Mix-
ture Model (GMM), whose coefficients are derived from
a Bernoulli distribution (first order binomial distribution).
Throughout this paper, we call ζ a binomial-Gaussian RV with
parameters (m,β, µ, σ2), if:

p(ζ;m,µ, σ2) =

m∑
i=1

(
m

i

)
βi(1− β)m−iN

(
(m− 2i)µ,mσ2

)
.

(17)

It is known that for β = 0, the probability of input LLR
error approaches zero for large variances. Accordingly, the
BMI between the source data and input LLR approaches 1.

−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variance: σ2 (dB)

J e(σ
, β

)

 

 

β:0
β:0.01
β:0.1
β:0.2

Fig. 4. Mutual information (in terms of bit) between the channel observation
LLRs and the source data as a function of variance σ2 for different observation
error parameter β.

We now present the following theorems for the incomplete
observation accuracy case.

Theorem 4.1: The BMI between the source data and the
2nd order Binomial-Gaussian distributed LLR with parameter
set (m = 2, β, µA = σ2

A/2, σ
2
A) is

I(A;S) = Je(µA, σA, β)

= 1− 1√
2πσA

∫ ∞
−∞

[β̄e
− (ζ−µA)2

2σ2
A +

βe
− (ζ+µA)2

2σ2
A ] log

( 1 + e
− 2µA
σ2
A

ζ

β̄ + βe
− 2µA
σ2
A

ζ

)
dζ. (18)

Proof See Appendix A.

Consequently, the mutual information I(A;S) is a function
of the LLR variance σ2

A and the observation error parameter β.
If the observation accuracy is 100% (i.e. β = 0) and relation
(12) holds, (18) is reduced to the well-known equation (19)
for a classical MTD as in [33].

I(A;S) = J(σA)

= 1− 1√
2πσA

∫ ∞
−∞

e
− (ζ−µA)2

2σ2
A log(1 + e

− 2µA
σ2
A

ζ
)dζ.

(19)

In Fig. 4, the function Je(.) is depicted as a function of
standard deviation σA and observation error parameter β.
It is seen that Je(.) is a monotonically increasing function
of variance for a fixed β, hence it is invertible. Also, it is
observed that the function Je(σ, β) does not approach 1 even
for extremely large variance σ2. It rather approaches 1−H(β).
We note that the same relations hold for extrinsic LLRs:

I(E;S) = Je(µE , σE , β). (20)

Note that for a one-to-one function gβ(.), we have
I(Ai;S) = I(gβ(As,i);S) = I(As,i;S). So is true for Ei
and Es,i.
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B. EXIT Chart Derivation for the Proposed Decoder

In this section, the equations derived in the previous section
are used to develop an algorithm to derive the EXIT chart
curves. The relation between σA and σE or accordingly be-
tween I(A;S) and I(E;S) depends on the decoding algorithm
parameters. This is generally obtained by empirical histogram
methods, since no closed form is known, even for the case of
complete observations [26], [31]. To develop a similar method
for the proposed system, we first review the following remarks:
• Remark 1: Extensive simulations show that in a con-

stituent decoder, when the input frames (including sys-
tematic and parity bits) and a priori LLRs (generated
by the other constituent decoders) are corresponding to
different versions of the same source data sequence, then
the output LLRs Di will approach Gaussian distribution
with means biased either towards the corresponding bit in
the input frame or the corresponding input LLR (based
on the LLRs absolute values), if they are inconsistent.
This is due to the large number of operations on the input
frame and the LLRs on the trellis structure, which is well
confirmed by Kolmogorov-Smirnov test for goodness of
fit. However, after appropriate scaling of input LLRs to
be consistent with the received bits, the resulting extrinsic
LLRs, Ei always bias towards the observation bits.

• Remark 2: It is notable that the potential inefficiency
of iterative information exchange among constituent de-
coders applied for correlated sensors was noticed in
prior works. For instance, the authors in [21] have used
the interleaver block after encoding to avoid harmful
information exchange by generating consistent/coherent
parity bits. This unusual use of interleaver is not optimal
and decreases the minimum distance of the resulting
codewords, especially for short frame lengths.

To implement the EXIT chart analysis, we need to calculate
the following BMI between the source data and i) the input,
I(A

(r)
i ;S) and ii) the effective extrinsic LLRs I(E

c(r)
i ;S).

Noting (7), we have:

I(E
c(r)
i ;V ) = I(A

(r+1)
s,i ;V ) = I(A

(r+1)
i ;V ) (21)

which quantifies the improvement of the mutual information
between the common source data and a priori information at
two consecutive iterations.

It is worth noting that in the case of complete observation
accuracy (β = 0), we have gβ(x) = x and the effective

extrinsic LLR defined in (7) becomes Eci =
N∑
j=1
j 6=i

Ej , which

is a Gaussian RV with the following mean and variances

µEci =

N∑
j=1
j 6=i

µEj , σ2
Eci

=

N∑
j=1
j 6=i

σ2
Ej = (N − 1)σ2

E . (22)

It immediately follows that µEci = (N − 1)µE = (N −
1)σ2

E/2 = σ2
Eci
/2. Consequently, (13) holds for Eci and the

mutual information between the source data and the effective
extrinsic LLR can be easily calculated using J(σEci ) in (19).
In the case of incomplete observation accuracy, β 6= 0,

the following theorem holds for the effective extrinsic LLRs
distribution, since relation (13) does not hold for Eci anymore.

Theorem 4.2: The extrinsic LLR, Eci has the following
distribution with parameters (m,β, µE , σ

2
E):

pEci (ζ|v) =

m∑
k=0

(
m

k

)
βk(1− β)m−k(

fY (ζ;−vµE , σ2
E) ∗ ... ∗ fY (ζ;−vµE , σ2

E)
)︸ ︷︷ ︸

k times

∗
(
fY (ζ; +vµE , σ

2
E) ∗ ... ∗ fY (ζ; +vµE , σ

2
E)
)︸ ︷︷ ︸

m−k times

,

fY (y;µ, σ2) = | ey(1− 2β)

[ey(1− β)− β][1− β − eyβ]
|

.fX(log(
ey(1− β)− β
1− β − eyβ

)), X ∼ N (µ, σ2). (23)

Proof See Appendix B.

Corollary 4.3: For the special case of complete observation
accuracy (β = 0), it is easy to see that fY (.) = fX(.).
Moreover, all terms except for k = 0 go away in (23) and
it reduces to:

pEci (ζ|v) = fY (ζ; +vµE , σ
2
E) ∗ ... ∗ fY (ζ; +vµE , σ

2
E)︸ ︷︷ ︸

m times

= N (ζ; +mvµE ,mσ
2
E). (24)

This is consistent with (22) noting the fact that for β = 0,

we have Eci =
m∑
j=1

Ej . For the case of two sensors (m = 1),

(24) becomes pEci (ζ|v) = N (ζ; +vµE , σ
2
E), which is corre-

sponding to the classical turbo decoder.
Ultimately, the BMI between the source data and the

extrinsic LLR can be calculated as

I(Ec;S) =
∑
v=±1

p(v)

∞∫
−∞

pEci (ζ|v) log
[pEci (ζ|v)

pEci (ζ)

]
dζ,

= 1− 1

2

∑
v=±1

∞∫
−∞

pEci (ζ|v) log
[

pEci (ζ|v = −1) + pEci (ζ|v = +1)

pEci (ζ|v)

]
dζ, (25)

where we have used p(V = 1) = p(V = −1) = 1
2 and

∞∫
−∞

pEci (ζ|v)dζ = 1.

Plotting I(Ec;S) vs I(A;S) and I(A;S) vs I(Ec;S)
curves according to Algorithm 1 represents the EXIT chart
curves which are denoted by direct and reverse curves, re-
spectively.

In Fig. 5, the modified EXIT chart is depicted versus
observation accuracies and SNR values. The EXIT charts
demonstrate the following properties:

1- The modified EXIT charts depend on both the chan-
nel SNR and observation accuracy. Higher observation
errors suggest less advantage for iterative decoding.
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Algorithm 1: EXIT chart for MTD in a system with
arbitrary number of sensors.

1) A sequence of binary source data bits, {s(n)}Mn=1,
is generated.

2) A sample observation sequence {ui(n)}Mn=1 is
generated by passing the source data bits through
a virtual BSC channel with crossover probability
β according to (1).

3) The observation sequence is interleaved, RSC en-
coded, and punctured to form the output codeword
{xi(n)}M/R

n=1 where R is the effective coding rate
of each sensor. Considering the symmetry of the
whole encoder/decoder structures, one constituent
decoder is arbitrarily chosen.

4) The codeword is passed through an AWGN chan-
nel to form the channel observation {yi(n)}M/R

n=1 .
5) The received symbols are unpunctured into the

systematic and parity bits.
6) The input LLRs {As,i(n)}Mn=1 are generated from

the indirect observations of source data bits,
by sampling pdf in (16), then are scaled down
with fβ(.) to form {Ai(n)}Mn=1 and are fed
into the constituent decoder to yield the output
LLRs {Di(n)}Mn=1 as well as the extrinsic LLRs
{Ei(n)}Mn=1. Then the effective extrinsic LLRs
are calculated using (7).

7) The observation error parameter β̂ is estimated
using (9) and (10). For the two decoder case, the
second step in equation (10) is not required.

8) Ultimately, the mutual information between the
source data bits and i) the a priori LLRs and ii) the
effective extrinsic LLRs, I(Ai;S) and I(Eci ;S)
are calculated using (18) and (25).

Likewise Lower channel SNRs present more advantage
for iterative decoding.

2- Despite regular EXIT charts that are developed for clas-
sical point-to-point turbo codes, the modified EXIT chart
curves do not necessarily approach full convergence
point, even for very large SNR values. This results
in relatively higher error floors. The lower bound on
error floor can be calculated considering the error free
channels from the sensors to the decoder. Error occurs if
at least half of the observation bits are in error. Hence,
we have the following error floor:

p(min)
error =



N∑
k=N+1

2

(
N

k

)
βk(1− β)N−k, N odd,

1

2

(
N

N/2

)
βN/2(1− β)N/2+

N∑
k=N

2 +1

(
N

k

)
βk(1− β)N−k, N even.

(26)
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β=0.1,  snr=−2
β=0.1,  snr=0
β=0.1,  snr=1
β=0.1,  snr=2
β=0.01,snr=0

Fig. 5. EXIT charts for different observation accuracies (Number of sensors:
2). Solid and dashed lines are, respectively, corresponding to the direct and
reverse curves. Dotted lines are corresponding to the maximum achievable
BMI (in terms of bit), 1−H(p(min)

error ), for error floor defined in (26).

For the two-sensor case, (26) reduces to p(min)
error = β. The

theoretical SNR to achieve the error floor is obtained in
Appendix D.

3- The initial slope of EXIT chart direct curve defines the
convergence property. Near-zero initial slope declares a
poor convergence property, where no significant BER
improvement is obtained using iterative decoding.

4- If the number of sensors are too high, the EXIT chart
direct curve approaches the horizontal line of I(E;S) =
1 bit, as stated in the following theorem. This means
that almost complete certainty is obtained at the first
iteration, and no considerable gain is obtainable by
further iterations. Hence, non-iterative mode is always
preferred.

Theorem 4.4: The BMI between the source data and the
effective extrinsic LLRs for extremely large number of sensors
and small observation error parameter (β → 0) approaches 1
bit for any positive channel SNR.

Proof See appendix C.

V. DECODING MODE SELECTION AND EXPERIMENTAL
RESULTS

We define the ε-convergence region as the system conditions
at which the iterative decoder outperforms the non-iterative
one with a margin of at least ε, where 0 < ε � 1 is a small
number. Specifically, we have piter

e < (1 − ε)pno-iter
e , where

piter
e and pno-iter

e are the BER of the iterative and non-iterative
decoders, respectively. A corresponding relation can be found
for I(Ai;S) and I(Eci ;S) based on the equations derived in
section IV. The non-convergence region is corresponding to
the near zero initial slope of the EXIT chart direct curve, where
no considerable gain is obtained by adding to the input LLRs.
This region is obtained for N = 2 and ε = 0.1&0.02 by
running the proposed algorithms for various pairs of (SNR, β)
and analyzing the resulting EXIT charts. The ε-convergence
region is shown with dark color in Fig. 6.
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The convergence region is revealed to the decoder. Once
the decoder receives a new multi-frame from the sensors,
it estimates the channel SNR and the observation accuracy
parameter after running one decoding iteration. If the (SNR,
β) pair falls in the convergence region, the iterative decoding
mode is chosen. Failure in estimation of the channel SNR and
observation accuracy, which may cause an undesired mode
selection, can be simply avoided by choosing fairly large frame
lengths that ensures a high estimation accuracy. However, in
the case of very rare event of the wrong mode selection, the
BER performance and complexity of the proposed bimodal
decoder are equivalent to the currently used single-mode
decoders.

To confirm the performance improvement obtained by the
mode selection criterion, we performed extensive simulations
for the proposed decoder with the following parameters (M =
2048 bits, N = 2). The feedforward and feedback polynomials
of the RSC encoders are arbitrarily set to f(D) = 1+D+D2

and g(D) = 1 +D2, respectively.
Table. VI represents the resulting BER for various (SNR,

β) pairs. Iteration=1 corresponds to the non-iterative mode
and iteration=10 is used to calculate the BER of the iterative
mode. The last column shows the BER improvement obtained
by iterative decoding. It is shown that for large SNR values, the
BER of the iterative decoder is almost equal to that of the non-
iterative decoder (i.e. within ε range). Hence, no-iterative mode
is desired for complexity reduction. This SNR limit depends
on the observation accuracy of sensors. The more accurate
are the sensors, the higher is the SNR limit and hence the
iterative mode is chosen more frequently. This is due to the
fact that in this case, the observation bits of sensors and hence
the extrinsic LLRs are more coherent. The results in this table
are consistent with the iterative region obtained in Fig. 6. For
instance, for the choice of (SNR=+4 dB, β = 0.05), there is
no improvement for the iterative decoding, which falls out of
the convergence region. In contrast, (SNR=0 dB, β = 0.01)
presents a significant improvement for the iterative decoding
and falls inside the convergence region in Fig. 6.

β

SNR (dB)

 

 

−1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
ε:0.01
ε:0.1

Fig. 6. Convergence region of iterative decoding algorithm in terms of the
channel SNR and β for ε = 0.1 and ε = 0.02; outside the region, non-
iterative algorithm is selected.

TABLE I
BER RESULTS FOR VARIOUS (β , SNR) PAIRS. THE SYSTEM PARAMETERS
ARE N = 2,M = 2048 AND BER IS OBTAINED BY AVERAGING OVER 100

FRAMES. THE LAST COLUMN SHOWS THE PERCENTAGE OF THE BER
IMPROVEMENT WITH ITERATIVE DECODING, (I.E.

100× (pNO-ITER
e − pITER

e )/pNO-ITER
e ).

β
SNR
(dB) Iter:1 Iter:2 Iter: 3 Iter:10

Imp
(%)

0.15
0 1.708e-01 1.649e-01 1.648e-01 1.650e-01 3.4

+2 1.513e-01 1.507e-01 1.508e-01 1.501e-01 0.3
+4 1.503e-01 1.506e-01 1.506e-01 1.506e-01 -0.2

0.05
0 7.524e-02 5.882e-02 5.708e-02 5.655e-02 24.8

+2 5.091e-02 4.981e-02 4.972e-02 4.977e-02 2.2
+4 5.007e-02 5.029e-02 5.025e-02 5.025e-02 -0.4

0.01
0 3.718e-02 1.310e-02 1.066e-02 1.033e-02 72.2

+2 1.121e-02 9.907e-03 1.001e-02 1.001e-02 10.6
+4 9.659e-03 9.595e-03 9.595e-03 9.595e-03 0.7

VI. CONCLUSIONS

The use of scalable and low-complexity D-PCCC with a
customized MTD-based decoder to estimate a binary data
source surrounded by a cluster of partially accurate observers
is studied. Convergence of the iterative decoding is analyzed
by introducing a modified EXIT chart technique. It is shown
that the usefulness of iterative information exchange among
constituent decoders depends on the observation accuracy
of sensors and the channel quality. This finding is used to
determine the superiority region of the iterative decoding. As
a general rule, it is concluded that the iterative operation is less
useful, when the channel SNR is very high or the observation
accuracy of sensors are too low.

This region is derived once using extensive EXIT chart
analysis and revealed to the decoder at design time. This
approach reduces the complexity of decoder by avoiding use-
less iterations. This new approach of conditioning cooperation
among constituent decoders to the current system quality
factor can be used to improve the performance and reduce
the complexity of the similar iterative joint decoding schemes
applicable to the CEO problem.

APPENDIX A
PROOF OF THEOREM 4.1

The mutual information between a priori information of a
constituent decoder and the source data is calculated as:

I(A;S) = I(A;V ) =
∑

v=−1,1

∫ ∞
ζ=−∞

pA(v, ζ) log
pA(v, ζ)

pA(v)p(ζ)
dζ

=
1

2

∑
v=−1,1

∫ ∞
−∞

pA(ζ|v) log
pA(ζ|v)

pA(ζ)
dζ

=
1

2

∑
v=−1,1

∫ ∞
−∞

pA(ζ|v) log(

2pA(ζ|v)

pA(ζ|v = −1) + pA(ζ|v = +1)
)dζ.

(27)
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From (16) we recall that

pA(ζ|v) =
1√

2πσA

[
β̄. exp

(
− (ζ − µAv)2

2σ2
A

)
+ β. exp

(
− (ζ + µAv)2

2σ2
A

)]
(28)

⇒ 2pA(ζ|v = ±1)

pA(ζ|v = −1) + pA(ζ|v = +1)

=
β̄ + β. exp(± 2µAζ

σ2
A

)

1 + exp(± 2µAζ
σ2
A

)
. (29)

Substituting (29) in (27) results in

I(A;S) =
1

2

∫ ∞
−∞

1√
2πσA

[
β̄e
− (ζ+µA)2

2σ2
A + βe

− (ζ−µA)2

2σ2
A

]
log
( β̄ + β. exp(− 2µAζ

σ2
A

)

1 + exp(− 2µAζ
σ2
A

)

)
dζ

+
1

2

∫ ∞
−∞

1√
2πσA

[
β̄e
− (ζ−µA)2

2σ2
A + βe

− (ζ+µA)2

2σ2
A

]
log
( β̄ + β. exp(+ 2µAζ

σ2
A

)

1 + exp(+ 2µAζ
σ2
A

)

)
dζ. (30)

Both integrals have the same value. This can be easily verified
by change of variables (u = −ζ). Hence, (30) can be rewritten
as

I(A;S) =
1√

2πσA

∫ ∞
−∞

[
β̄e
− (ζ+µA)2

2σ2
A + βe

− (ζ−µA)2

2σ2
A

]
.
[
1 + log

( β̄ + β. exp(− 2µAζ
σ2
A

)

1 + exp(− 2µAζ
σ2
A

)

)]
dζ. (31)

Noting that
∫∞
−∞ pA(ζ|v = 1)dζ = 1, (31) reduces to

I(A;S) = 1− 1√
2πσA

∫ ∞
−∞

[
β̄e
− (ζ+µA)2

2σ2
A + βe

− (ζ−µA)2

2σ2
A

]
. log

( 1 + exp(− 2µAζ
σ2
A

)

β̄ + β. exp(− 2µAζ
σ2
A

)

)
dζ. (32)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 4.2

If S is the source data bit with BPSK modulated version
V = 2S − 1. We present the observation bit set of the first m
sensors as Um = {U1, U2, ..., Um} with support set Um. Also
we define Um,k as a subset of Um such that the observation
bit is in error for k out of m sensors. It is obvious that Um,ks
are disjoint sets and Um,0 ∪ Um,1... ∪ Um,m = Um making
Um,i a partition of Um. Noting that p(Ui = S) = 1− p(Ui =
S̄) = β, the probability of any randomly chosen observation
set in Um belongs to Um,k follows the binomial distribution
with parameters (m,β) regardless of V ; i.e.,

p(Um ∈ Um,k|v) = p(Um ∈ Um,k) =

(
m

k

)
βk(1− β)m−k.

(33)

The observation set determines the extrinsic LLR’s mean
value as

Ei ∼

{
N (+V µE , σ

2
E), if Ui = S,

N (−V µE , σ2
E), if Ui = S̄,

(34)

which can be rewritten as

Ei ∼ N
(
(2Ui − 1)µE , σ

2
E

)
. (35)

Since Eci is the summation of all constituent decoders
extrinsic LLRs except one, the conditional pdf of Eci can be
calculated as

pEci (ζ|v) =
∑

∀um∈Um
p(Eci = ζ|um)p(um|v)

=

m∑
k=0

p(Eci = ζ|um ∈ Uk,m)p(um ∈ Um,k|v)

=

m∑
k=0

(
m

k

)
βk(1− β)m−kp(Eci = ζ|um ∈ Um,k) (36)

where Eci is defined in (7). For notation convenience, we
use new variables x , Ei = N (µ, σ2) and y , gβ(x) =

log
(β+(1−β)ex
(1−β)+βex

)
. For β < 0.5, y is a monotonic increasing

function of x. Using the change of variable methods in [35],
we have the following pdf for y:

fX(x;µ, σ2) = N (µ, σ2)

⇒ fY (y;µ, σ2) =| d
dy

(g−1β (y)) | fX(g−1β (y))

= | ey(1− 2β)

[ey(1− β)− β][1− β − eyβ]
|fX(log(

ey(1− β)− β
1− β − eyβ

))

(37)

It is easy to see that for β = 0, we have fY (y) = fX(x),
which verifies the correctness of (37). We also recall that the
pdf of Z = Y1+Y2+...Yn for independent Yi is in the form of
fZ(ζ) = fY1(ζ)∗fY2(ζ)∗ ...∗fYm(ζ) [35]. Noting that Eci for
Um ∈ Um,k includes k extrinsic LLRs with mean −V µE and
(m − k) with mean +V µE , all with variance σ2

E , we have
the following distribution for Eci after some straightforward
manipulations:

pEci (ζ|v) =

m∑
k=0

(
m

k

)
βk(1− β)m−k

.
(
fY (ζ;−vµE , σ2

E) ∗ ... ∗ fY (ζ;−vµE , σ2
E)
)︸ ︷︷ ︸

k times

∗
(
fY (ζ; +vµE , σ

2
E) ∗ ... ∗ fY (ζ; +vµE , σ

2
E)
)︸ ︷︷ ︸

m−k times

, (38)

where fY (.) is defined in (37). This completes the proof.
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APPENDIX C
PROOF OF THEOREM 4.4

To prove this theorem, first we calculate pEci (ζ < 0|v = 1).
From (24) we have

pe = pEci (ζ < 0|v = 1)

=

0∫
ζ=−∞

1√
2πmσ2

E

m∑
k=0

(
m

k

)
βk(1− β)m−k

. exp
[
− (ζ − (2k −m)µE)2

2mσ2
E

]
dζ

=

m∑
k=0

(
m

k

)
βk(1− β)m−kQ

[ (2k −m)µE√
mσE

]
. (39)

We note that for the case of no signal reception at the
decoder (SNR=0), the mean of extrinsic LLRs are independent
of the corresponding source bits and hence µE = 0. In this

case, we have pe =
m∑
k=0

(
m
k

)
βk(1 − β)m−kQ(0) = 1

2 as

expected. For a positive SNR, using normal approximation
for the binomial distribution for large m, (39) converts to

pe ≈
1√

2πmβ(1− β)

m∑
k=0

[
exp

[
− (k −mβ)2

2mβ(1− β)
]

.Q
[ (2k −m)µE√

mσE

]]
. (40)

Using approximation Q(x) ≤ 1√
2π
e−x

2/2 for Q function as
in [36], [37] and noting µE = σ2

E/2, results in

pe ≈
1

2π
√
mβ(1− β)

m∑
k=0

[
exp

[
− (k −mβ)2

2mβ(1− β)

]
︸ ︷︷ ︸

α1

. exp
[
− (m− 2k)2σ2

E

4m

]
︸ ︷︷ ︸

α2

]
. (41)

We know that 0 ≤ α1, α2 ≤ 1. Also, α1 = 1 in proximity
of k = mβ and decays exponentially elsewhere. So does α2

in proximity of k = m/2. Therefore for β 6= 1
2 and large

m these two points are far apart; hence, α1.α2 is very small
everywhere. Therefore, the summation approaches zero and
we have lim

m→∞
pe = 0.

An alternative proof is presented using jointly typical sets
concept. If v = 1, the realization of observation set um =
{u1, u2, ...um} most likely includes m(1−β) correct and mβ
false bits. Hence, Eci is a summation of m(1 − β) Gaussian
RV with mean +µE and mβ Gaussian RV with mean −µE ,
all with variance σ2

E . Consequently, Eci is a Gaussian RV
with mean (1 − 2β)µE and variance mσ2

E . If we define
Ê = sgn(Eci ), the probability of LLR error, pe = p(Ê 6= v)
can be calculated as follows

pe = pEci (ζ < 0|v = 1) = Q
(m(1− 2β)µE√

mσE

)
= Q

(√
m(1− 2β)µE/σE

)
−→
m→∞

Q(∞) = 0. (42)

The last equality holds only for nonzero SNR (µE/σE > 0)
as mentioned in the previous proof. Consequently, we have
I(Ê;S) = H(pe). Applying data processing inequality to
Markov chain V → Eci → Ê results in

I(Eci ;S) ≥ I(Ê;S) = H(pe) −→ 1 bit
m→∞

. (43)

This completes the proof.

APPENDIX D
SNR LIMIT TO REACH ERROR FLOOR

To calculate the minimum SNR required to reach error floor,
we note that due to the decoder structure, error floor is reached
if the lossless transmission of the sensors correlated data is
secured. For a Gaussian MAC channel, it was shown that
the maximum sum-rate is achievable by time sharing as in
TDMA [24]. The maximum rate of each sensor for equal noise
variance N0, is Ri = 1

2 log(1 + ES
N0

), where Es is the energy
per transmit symbol.

On the other hand, recall that S is the source bit and
XN is the observation bits of N sensors with realization
xN and support set XN ,X = {0, 1}. Due to the equal and
independent observation error of sensors, the information of
each observation bit is 1

MH(XN ). If the coding rate per sensor
is Ri, therefore we need to have Ri

MH(XN ) ≤ 1
2 log(1 + ES

N0
)

for lossless communication from sensors to the destination. It
provides the SNR limit of Es/N0(min) = e2Ri

H(XN )
N − 1

or equivalently Eb/N0(min) = N
Ri

(e2Ri
H(XN )
N − 1). The

required joint entropy of observation bits H(XN ) can be easily
calculated as:

H(XN ) = −
∑

∀xN∈XN

p(xN ) log(p(xN ))

= −
N∑
k=0

(
N

k

)
p(XN = xN,k) log(p(XN = xN,k))

= −
N∑
k=0

(
N

k

)( 1∑
s=0

p(XN = xN,k|S = s)p(S = s)
)

. log
( 1∑
s=0

p(XN = xN,k|S = s)p(S = s)
)

=

N∑
k=0

(
N

k

)
β̄kβN−k + βkβ̄N−k

2

. log
( β̄kβN−k + βkβ̄N−k

2

)
= 1−

N∑
k=0

(
N

k

)
β̄kβN−k + βkβ̄N−k

2

. log
(
β̄kβN−k + βkβ̄N−k

)
, (44)

where xN,k is an arbitrary realization of xN with k number
of 0 bits.
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