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Abstract—In this paper, an online reinforcement learning
method based on particle swarm optimization (PSO) is proposed to
maximize transmission energy efficiency of cognitive radio sensor
networks (CRSN) by regularizing packet lengths. The idea is
to simulate a set of artificial channels to find a hypothetical
channel that behaves almost equivalently to the actual channel
by minimizing a properly developed loss function. This method
eliminates the need for a separate offline channel estimation. The
results show an improvement of respectively 40% and 20% in
the energy efficiency of the proposed method compared to the
constant packet length and MLE based offline channel estimation.
Also, the PSO based optimization method outperforms similar
evolutionary methods. This framework is general and can be used
to optimize a desired parameter in cognitive radio networks.

I. INTRODUCTION

Recently, the idea of using cognitive radio sensor net-
works (CRSN) by leveraging cognizant spectrum access to
implement low-cost sensor networks has witnessed an un-
precedented attention [1]. An important challenge of CRSN
is optimizing transmission energy efficiency (EE) to prolong
lifetime of tiny sensors with limited power sources. Improving
EE also reduces the environmental impacts of communication
systems, as a key goal of green communications [2].

In this paper, we study the problem of maximizing EE for a
network of sensors as unlicensed secondary users (SU) which
transmit their data packets in vacancies of a shared channel fol-
lowing an interweave-based cognition [3]. In [4], the authors
proposed to optimize EE of CRSN through regularizing packet
lengths based on the current channel conditions. However, this
approach assumes a prior knowledge of the channel statistics
for SUs, which is not realistic in practical applications. On
the other hand, using channel estimation methods requires
long training times and hence imposes additional transmis-
sion delays. Channel prediction methods are used recently to
accelerate this process by using the history of channel state
information (CSI) to predict the properties of next few time
slots using two exploitation and exploration phases [5], but is
not suitable for extremely dynamic situations. To eliminate the
need for additional exploitation phase, reinforcement learning
can be used to learn channel conditions over time [6]. How-
ever, the learning outcomes typically exhibit considerable lag
from the actual channel variations and hence fail in timely
reaction to abrupt channel variations.

To address the above mentioned issues, here we propose a
novel online learning method that predicts a channel’s EE be-
havior, instead of directly learning channel CSI. The idea is to
simulate a set of artificial channels and utilize a particle swarm
optimization (PSO)-based method that converges rapidly to a
hypothetical channel which behaves almost equivalently to the

Fig. 1: System model: A cluster of cognitive sensors combine measurement samples into
data packets and send them in vacancies of a shared channel. Using an online learning
method, packet lengths are regularized to maximize energy efficiency. A polling method
is used to coordinate sensors’ access to the channel to avoid inter-sensor interference.

actual channel in terms of EE. Packet length regularization
is incorporated into the optimization stage and hence the
system adaptively adjusts packet lengths to retain maximal
EE. This PSO-based learning method can be used to optimize
a desired performance metric of secondary networks such as
power consumption, delay, and data throughput without a prior
knowledge about the primary network. It eliminates the need
for constant channel estimation [7]. Further, this software-
based method provides a quick adaption to the channel vari-
ations at relatively low computational cost without imposing
additional delay and energy consumption to the system.

II. SYSTEM MODEL

The system model as depicted in Fig. 1 comprises a cluster
of cognitive sensors as SUs that collect measurement informa-
tion and send it to a designated destination through a shared
channel owned by a network of licensed primary users (PU).
Here, we use interweaved cognition, where SUs utilize the
channel only if it is not in use by PUs. Also, SUs abandon
their current transmission sessions as soon as the common
channel seized by PUs to make the secondary network totally
absent from the primary network’s perspective [8]. Following
the commonly adopted assumption of independent interval
among consecutive samples, here we assume that the N-bit
measurement samples are generated according to a Poisson
process of rate λ. A sequence of k consecutive samples are
combined to form a data packet of length l(k) = kN+H bits,
where H is the packet header. We utilize coordinated medium
access control (e.g. polling-based channel access) among the
SUs to avoid inter-sensor interference. This assumption pro-
vides the convenience of modeling a system of M users with
input traffic λ′ as a single-user with input traffic λ = Mλ′. We
assume zero error tolerance with selective automatic repeat
request (ARQ) retransmission mechanism to ensure that an
error-free copy of each packet is delivered to the destination.



A SU’s packet is discarded due to two main reasons
including channel errors and loss of channel when a PU seizes
the channel. The channel utilization process is modeled as
a sequence of intervals with alternating busy and available
states, where the intervals follow the commonly used expo-
nential distribution [9] with means u and v, respectively (i.e.
T2i ∼ exp(u), T2i+1 ∼ exp(v) for i = 0, 1, 2, . . . ).

This work concerns the fundamental question of what is the
optimal number of samples in each data packet (denoted by
k), such that the EE is maximized noting the contradictory
impacts of k on EE. Longer packets increase the packet error
rate, βp(k) = 1−(1−β)kN+H , where β and βp are the bit and
packet error probabilities, respectively. Also, longer packets
increase the probability of channel loss during a transmission
session. Therefore, a large k declines EE through increasing
the retransmission rate. On the other hand, a larger k improves
EE by reducing the packet overhead ratio H/(kN + H).
In particular, we are interested in developing an efficient
and near-optimal method that regularizes kt for iterations
t = 1, 2, 3 . . . , nT based on the current system conditions such
that it converges to the maximizer of EE(k), where no prior
knowledge about the channel conditions (u, v, β) is available
to the secondary system.

kt → k∗ = argmax
k
{EE(k)} as t→∞. (1)

III. ENERGY EFFICIENCY
In this work, we follow the popular definition of EE [10] as

the average number of successfully transmitted bits per unit
energy consumption. It is common to split consumed energy
into two parts including Pp (the power used per packet for
packet formation, queuing, channel selection, etc [11]) and
Pb (power used per bit for the actual transmission power).
Consequently, we have:

EE(k, ch) =
kN

Pb(E[Rdld(k)] + l(k))E[Re] + Pp
, (2)

where, Rd is the number of retransmissions caused by the
channel loss until sending a copy of the packet, ld(k) is the
average number of bits sent in an unsuccessful transmission
attempt before the channel loss, Re is the number of retrans-
missions due to channel errors and l(k) is the number of bits
in a complete packet. If the channel parameters are known, we
can find an explicit expression for EE(k, ch) by characterizing
Rd, and Re in terms of channel statistics (u, v, β) and k.
Before detailing the proposed method, we simplify (2) to

EE(k, ch) =
kN

Pb(E[Rd]E[ld(k)] + l(k))E[Re] + Pp
, (3)

noting that Rd and ld(k) are conditionally independent for a
given k. Exponential distribution of channel intervals implies a
uniform distribution for the intersection of a packet and chan-
nel transition epoch, which in turn yields E[ld(k)] = l(k)/2 =
(KN +H)/2. Also, Re follows a geometric distribution with
success probability αp(k) = (1 − βb)

kN+H and hence we
have E[Re] = 1/αp(k). However, finding E[Rd] is more
involving and we have to consider different scenarios for a

Fig. 2: The system dynamics (in terms of the channel status when the SU attempts to
transmit a packet) is modeled as a Markov chain.

packet transmission abortion. We note that in a queued system,
the departure epoch of a packet depends on the previous packet
departure. We model the system dynamics with a Markov
chain as depicted in Fig. 2, where the transitions show the state
of the next transmission attempt with respect to the current
attempt. We define the following four states:
• A: the channel is available and the remaining portion of

the current interval is sufficient to send a packet.
• B: the channel is busy.
• C: the channel is available but the remaining of the

current interval is not sufficient to send a packet.
• D: Absorbing state, an error-free copy of the packet is

delivered to the destination.
We develop the following state transition matrix T based on a
set of probabilities including the packet error probability (βp)
and the probability of the channel being sufficient for a packet
transmission (βs = Pr(T > sb) = e

−sb
v ), where sb = kN+H

Rch

is the time required to send a packet.

T =



A B C D

A βpβs 0 βp(1− βs) (1− βp)
B βs 0 (1− βs) 0

C βs 0 (1− βs) 0

D 0 0 0 1

 (4)

Likewise, the initial probability for the first packet and the
packets which arrive after the absorbing state, denoted by Π0,
can be expressed as follows:

ΠT
0 =

[
pA0

pB0
pC0

pD0

]
=
[

v
u+vβs

u
u+v

v
u+v (1− βs) 0

]
(5)

The expected number of passing through each state before
ending up with the absorbing state can be found using a sub-
matrix of transition matrix (after excluding the row and column
of the absorbing state) denoted by Z [12]. We first obtain the
fundamental matrix of (4) denoted by Q from Z, as follows:

Q = (I − Z)−1 =


−1
βp−1 0

−βp(βs−1)
βs−βpβs

−1
βp−1 1 −(βs−1)

βs−βpβs

−1
βp−1 0

−(βpβs−1)
βs−βpβs

 (6)



Noting the fact that passing through each step except the
absorption state corresponds to dropping a packet, we can find
the expected number of discarded packets as:

E[Rd] =
∑

Initial probability of each state

× expected number of passing through each state
= Π(1)Q(1, 3) + Π(2)Q(2, 3) + Π(3)Q(3, 3) =

=
v

u+ v
βs

(−βp(βs − 1)

βs − βpβs

)
+

u

u+ v

(−(βs − 1)

βs − βpβs

)
+

v

u+ v
(1− βs)

(−(βpβs − 1)

βs − βpβs

)
. (7)

IV. ONLINE LEARNING METHOD

Here, we propose an online learning method with expert
advice that converges to the maximizer of (3), for unknown
(u, v, β). The idea is using PSO, to maximize a function with
multiple local optimums by starting from a large number of
initialization points and moving towards directions where a
desired cost function for each particle and for the whole system
is minimized.

A. Initialization: Firstly, a predefined number of particles,
oi = (ui, vi, βi), i = 1, 2, . . . n, are randomly generated. Here,
ui, vi, βi are hypothetical expected values of (u, v, β) form
oi’s perspective. Also, an initial value for k is chosen (k1).

B. Try: In each segment s, the system collects m.ks
samples and transmits m packets of length l(ks), then the
empirical EE is calculated based on the most recent L

packets as EE(ks, ch) = kLN/
(
Pb
(∑L

j=1[Rd(j)ld(ks, j)]+

l(ks)
∑L
j=1[Re(j)]

)
+ LPp

)
.

C. Optimization: Then, a PSO-based optimization algo-
rithm is executed. Each particle oi, calculates the hypotheti-
cally expected energy efficiency EE(ks, o

t
i) based on the pre-

viously chosen ks and its own parameter set (uti, v
t
i , β

t
i ), where

postscript t denotes the iteration number. Subsequently, a loss
function dt(i) = |EE(ksi, o

t
i) − EE(ks, ch)| is calculated

for each particle. Then, an iterative PSO-based algorithm is
executed based on two input sets including i) experts’ advice
as particles and ii) the loss function based on empirical energy
efficiency. At each iteration t, each particle i moves towards
a direction which is the linear combination of i) its previous
motion at iteration t − 1, ii) its best local position, denoted
by otb(i) with a locally minimal loss function b(i), and iii) the
global best particle, denoted by og . More formally, we have:

ot+1
i = oti + V ti dt,

V ti dt = δ(ob(i)− oti) + β(og − oti) + γ(oti − ot−1i ), (8)

where δ, β, γ are tuning parameters. The motions continue un-
til the algorithm converges to a global best or for a predefined
number of iterations. Finally, ks+1 ← arg mink EE(k, og) is
chosen as the best k for the next segment. The pseudo code
of the proposed algorithm is presented next. The complexity
of this algorithm is O(nTn), which is linear in the number of
iteration nT and particles n, therefore computationally feasible

in practical systems. The convergence to a global optimum is
ensured by choosing sufficiently large n and distant particles.

Algorithm 1: Optimum packet length estimation algorithm
Input: ,H ,N , EE(k, ch),nT ,m,L,n
Output: ks, for s = 2, 3, 4, . . . ,
begin

Init: initialize k1, initialize oi with random (ui,vi,βi)
for segment:s = 1 to ∞ do

Send m packets of length ks
EE(ks, ch) ← Measure empirical EE
Init: b(i) = ∞ for i = 1, ..., n
for t = 1 to nT do

for i = 1 to n do
dt(i) = |EE(ks, o

t
i)− EE(ks, ch)|

if dt(i) < b(i) then
b(i)← dt(i) (update local best)
ob(i)← oti

g ← arg mini b(i) i = 1, .., n (global best)
for i = 1 to n do

ot+1
i ←
oti+δ(ob(i)−oti)+β(og−oti)+γ(oti−o

t−1
i )

ks+1 ← arg mink EE(k, og)

V. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed

algorithm based on the system model provided in section II.
System parameters are set to λ = 1, N = 16, H = 80,
Pb = 0.01, PP = 0.02, Rch = 100 bps, L = 300, and
m = 30 unless otherwise specified. We also assume that the
channel parameters are subject to abrupt changes to simulate
the worst-case scenario. The system starts with a random
k1. At each segment s, m packets of length l(ks) is sent.
The proposed online learning method is executed based on
the resulting EE for the last L = 300 transmitted packets
to identify the optimal ks+1 for the subsequent segment and
this cycle continues. The training and a transmission segment
overlap in min(m,L) = 30 packets. The ratio of m/L makes
a balance between the accuracy of empirical EE and the agility
of the algorithm in responding to channel variations. We use
randomly initialized seed particles for each segment in order to
provide flexibility in accommodating channel variations from
one segment to another. We also include the best particle of
the previous segment as one of the seed particles for a faster
convergence in the absence of channel variation.
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Fig. 3: Optimum framing parameter (k) found by the proposed method for the SU for
time-varying channel availability rate (v/u ∈ [1 : 0.1 : 3], β = 10−4).



TABLE I: Evolution of the best particle for channel parameters (β = 10−4,v/u = 2)

Iteration Channel v/u β kopt EE
2 1.18 1.6e-4 9 0.281
5 1.1231 1.7264e-4 9 0.320

10 1.1193 1.7267e-4 8 0.323
100 1.1193 1.7268e-4 8 0.323

True Channel 2 1e-4 8 0.325

Fig. 4: Accumulated energy consumption for the system with constant k, MLE-based
offline learning and the proposed method.

The basic operation and convergence of the algorithm
is presented in Fig. 3. The particles start from a random
set of hypothetical channel parameters (β, u, v), but quickly
converge to an artificial channel which yields an EE close to
the empirical EE, hence it can be used to determine the optimal
k value. The green curve shows the suggestive packet length
k by the best particle at the end of each round of algorithm,
and the red curve is the optimal value of k based on the
actual channel parameters. The convergence is regardless of
the initialization points, hence the algorithm accommodates
abrupt channel condition changes. The most deviation from
the optimal k we noticed is 1, which is due to the discretizing
error, when solving the equation (1) for the best particle.

It is interesting that the parameters of the best particle
(β, u, v) may or may not match the actual channel, since
infinitely many combinations of (β, u, v) in (3) yield the same
EE. This concept is shown in Table I, where the best particle
converges to kopt = 8 in 10 iterations, but represents channel
parameters (β = 1.727×10−4,v/u = 1.119) which are totally
different than the true channel values (β = 10−4,v/u = 2).
The resulting EE is within 1% from the actual one in terms of
MSE. This is the main contrast of the proposed method with
directly estimating the channel parameters. Fig. 4 compares
the accumulated energy consumption of the system under the
same conditions for three methods including i) constant k
customized to the initial channel conditions, ii) optimal k
based on the offline maximum likelihood estimation (MLE)
of the channel parameters, and iii) the proposed method. It
is shown that the proposed method outperforms both methods
(20% over the MLE method and 40% over the constant k).
The superiority of the proposed method which adapts to the
dynamic channel conditions over the constant k is trivial. The
result of the proposed method overcomes the MLE method,
since a fairly large amount of packets are required for the
accurate estimation of all channel parameters.

Finally, Fig.5 compares the result of the proposed PSO-
based method with similar online learning approaches using
two different evolutionary methods differential evolution(DE)
and simulated annealing (SA) in terms of statistical parame-
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Fig. 5: Performance comparison of online learning methods using PSO, DE, and SA
methods. The mean and standard deviation of k is shown for 100 runs.

ters: mean (µ) and variance (σ) of the optimal k over 100
different runs. It is seen that the PSO-based optimization
engine outperforms other evolutionary methods since multiple
particles can cover a wider range of channel conditions and
are more successful in finding the global optima.

VI. CONCLUSIONS
In this paper, a novel approach is proposed to adjust

packets lengths of secondary users based on dynamic channel
conditions without directly estimating the shared channel
parameters. The idea is to use an online learning method
based on PSO to adjust packet lengths such that the deviation
of resulting energy efficiency from the empirically obtained
value is minimized. This novel method eliminates the need
for estimating channel parameters directly and shows 20%
less transmission power consumption compared to MLE-based
offline channel estimation and 40% compared to constant
packet lengths. The near-optimal performance of this method
is evident by catching up with the analytically derived param-
eters after a few iterations. This method is general and can be
used for similar optimization problems in cognitive networks.
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