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Chapter 8 

Information-flow in hard to reach areas: 
Source estimation using correlated streams 
 

In a typical Wireless Sensor Network (WSN), a number of spatially 
distributed sensors measure a set of desired environmental and physical 
parameters across a field and pass the collected data wirelessly to a central 
station for further processing. Various aspects of WSN systems including 
efficient data acquisition, optimal sampling rate and distributed compression, 
error recovery, information fusion, localization and tracking, routing and 
networking are studied in the past decade. These studies have led to design of 
novel algorithms to solve different technical challenges and alleviate 
implementation barriers. This book chapter considers a specific variant of 
WSNs, where data sources are located in hard to reach areas and therefore 
additional challenges and issues arise. An important scenario is field 
monitoring under extreme environmental conditions. Some real-world 
examples include jet engine temperature monitoring [1] [2], structural health 
monitoring [3] [4], underwater passive aquatic listeners [4], and space 
exploration using composite sensors [5]. In some other applications such as 
navigation systems using battery-free sensors [6]  placing sensors at exact data 
source locations is not feasible or economically viable since the source 
locations are not stationary or not known in advance. Figure 8-1 provides an 
illustrative example, where a set of autonomous Unmanned Aerial Vehicles 
(UAVs) track an animal of interest, collect intermittent and partially accurate 
imagery data and send it to a ground station for further processing [7].  
 

In these scenarios, an important challenge is the low fidelity of 
collected information not only due to communication errors, but also due to 
inaccuracies in the measurements of remotely deployed sensors [8] [9]. To 
address this issue, distributed coding emerged as an efficient technique to 
collect information more elegantly by individual sensors such that a reliable 
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information is extractable by fusing partially accurate observations [10]. This 
book chapter is devoted to exploring the state of the art in distributed coding 
techniques. In particular, a comprehensive review on the fundamental 
theoretical aspects of this problem is provided with a summary of recent 
developments. In this context, a novel and implementation-friendly solution is 
proposed to address this problem and answer a set of more specific technical 
questions including: i) how many sensors are optimal in a given conditions? ii) 
what is the fidelity of collected information? and iii) what is the highest 
achievable information rate? We finally provide insights about the integration 
of the proposed method with modern networking approaches in order to 
extend it to large-scale multi-hop communication infrastructure.  

8.1 INTRODUCTION 

A contemporary WSN consists of a multiple sensors mainly deployed 
in autonomous mobile ground or aerial vehicles with wireless transmission 
capabilities in order to collectively monitor environmental and physical 

Figure 8-1 Habitat monitoring: a set of autonomous UAVs monitor the object of interest in an 
inaccessible area and collectively report their observations to a central ground station for 
further processing. 
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parameters and transmit the collected data to a central data fusion unit for 
further processing. Wireless sensing is an integral part of the emerging 
Internet of Things (IoT) platforms with a broad range of applications including 
smart homes, smart grids, transportation and traffic control, aviation, wildlife 
monitoring, fire control, robotics and industrial automation [12] [13]. Due to 
the Ad-hoc nature of WSNs with dynamic and vibrant typologies, utilizing a 
central controller is costly, unreliable and inefficient. Therefore, distributed 
algorithm design and implementation has gained a lot of attention in research 
community to realize agile, flexible and scalable data acquisition, compression 
and transmission in WSNs [14].  
 

The majority of distributed algorithms aim at realizing a smooth and 
reliable data-flow from sensors to a central processing station by 
accommodating optimized compression, networking and error recovery 
techniques based on the assumption that sensor measurements accurately 
represent the actual monitored parameters. However, there are scenarios 
where placing sensors in exact data locations is not technically feasible due to 
a number of reasons including extreme environmental conditions (e.g. jet 
engine), lack of prior knowledge about source locations (e.g. fire control 
systems in forests), and maintenance difficulty (e.g. space exploration). In such 
scenarios, an effective solution is to deploy a cluster of sensors in proximity of 
a putative data source and process the collected data. In this regard, 
Distributed Source Coding (DSC) schemes are designed to exploit the intrinsic 
spatial correlation among sensors observations to compensate for sensors 
observation errors. This solution brings forward a new set of questions such 
as i) how many sensor are sufficient to achieve a certain level of fidelity, ii) 
how to compensate sensing inaccuracies, iii) how often to collect sensor 
readings and iv) how to exploit the spatial correlation among sensors. 
 

A comprehensive study of ongoing research in designing DSC 
algorithms during the past years reveals that most recent studies have been 
focused on developing theoretically near-optimal algorithms. However, the 
high complexity of these algorithms have prevented their commercial 
implementations in tiny sensors with limited capabilities [11]. Furthermore, 
most algorithms are designed and optimized based on two assumptions of data 
sources being stationary and observation models being fully known. Bothe 
assumptions are far from reality. Therefore, the majority of currently available 
System on Chip (SOC) sensor platforms such as Telos B Motes, Stargate, Mica2, 
Tmote Sky and IBM cricket stick with the conventional point-to-point coding 
techniques in their physical layer implementations following IEEE 802.15 
standard series and do not utilize recently proposed DSC schemes despite their 
proven superior performances [12] [13] [14] [15]. 
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This book chapter is devoted to study and design of practically feasible 
and self-tuning distributed algorithms for robust and adaptive data 
compression, error recovery and networking for WSNs with partially accurate 
sensors under dynamic environmental conditions. The main emphasis will be 
placed on a special case of remote sensing of a common data source with 
correlated sensors, the so called the Chief Execute Officer (CEO) problem. A 
novel implementation of distributed coding is discussed in detail, which is 
based on Parallel Concatenation of Convolution Codes (PCCC) with a novel bi-
modal decoder at the receiver.  
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8.2 THE CHIEF EXECUTIVE OFFICER (CEO) PROBLEM 

The mathematical model of the CEO 
problem (Figure 8-2) is first proposed by 
Toby Berger in his seminal paper to capture 
the spatial correlation among the readings of 
a cluster of sensors that collectively monitor 
a common data source [16]. This model is 
inspired by a similar problem in business 
studies, where a CEO of a company 
interviews his untrustworthy employees 
individually and process the interrogation 
results to extract reliable information about 
his plant. 
 

The CEO problem is a special case of 
a more general problem formulation, where 
𝐿𝐿 sensors collectively monitor 𝐾𝐾 sources 
with correlated data, as depicted in Figure 8-
3. In this figure, 𝑆𝑆𝑖𝑖  is the ith data source and 
𝑈𝑈𝑗𝑗 , 𝐸𝐸𝑗𝑗 , 𝑋𝑋𝑗𝑗 , 𝑁𝑁𝑗𝑗 , 𝑌𝑌𝑗𝑗  and 𝑅𝑅𝑗𝑗, respectively, denote 
the observation, observation error, coded 
sample, channel noise, received sample and transmission rate of the jth sensor. 
The main goal is to design 𝐿𝐿 distributed encoders with minimal rates 𝑅𝑅𝑖𝑖  and 
one joint decoder in order to estimate 𝐾𝐾 sources with a predefined distortion 
limit 𝑑𝑑(𝑆𝑆𝑖𝑖 , 𝑆̂𝑆𝑖𝑖) < 𝐷𝐷, where 𝑑𝑑(. , . ) is an arbitrary distance measure. Here, we 
assume additive observation error model 𝑈𝑈𝑖𝑖 = ∑ 𝑆𝑆𝑗𝑗  +  𝐸𝐸𝑖𝑖𝑆𝑆𝑗𝑗∈ 𝜒𝜒𝑖𝑖 , where 𝜒𝜒𝑖𝑖  
represents a set of sources observed by sensor 𝑖𝑖. For the sake of simplicity, we 
disregard the interference effect and assume parallel channel model with 
additive noise 𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖 + 𝑊𝑊𝑖𝑖, where 𝑋𝑋𝑖𝑖  is the coded sample and 𝑊𝑊𝑖𝑖  is the white 
zero-mean Gaussian noise with variance 𝑁𝑁𝑖𝑖 . 
 

This general model reduces for some important special cases if certain 
simplifying assumptions hold. For instance, we can set observation error to 
zero, i.e. 𝐸𝐸𝑖𝑖 = 0, ∀𝑖𝑖 = 1,2, … , 𝐿𝐿, which converts the indirect observation 
scenario to a simpler case of direct observation [17]. Another special case 
arises if any of 𝐾𝐾 utilized sensors monitors only one specific source (i.e. 𝜒𝜒𝑖𝑖 =
{𝑆𝑆𝑖𝑖}), and the correlation among sensor readings are restricted to the intrinsic 
correlations among the sources [18] [11]. If full information about some of the 
sensors are considered available to the receiver and the objective is to recover 
the other sensors’ readings, the problem reduces to the coding with side 
information [19] [20]. Considering only one source 𝐾𝐾 = 1, boils the problem 
down to the CEO problem, where the objective is to estimate the common 

Figure 8-2 CEO Problem: A cluster of 
𝐿𝐿 sensors collectively monitor a 
common source and send their 
observations to a data fusion center. 
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source [16]. In all cases, the sensors are not allowed to convene and exchange 
information with one another; hence, distributed coding is utilized [21]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

8.2.1 Binary Correlation Model   

The most commonly adopted model for correlation among sensor 
readings is joint Gaussian distribution, where the common source and the 
observations of sensors are jointly distributed according to a multivariate 
Gaussian distribution. This model is flawed in reality, since different data 
sources such light, temperature, humidity, stress, pressure, and etc. do not 
follow normal distribution in general [22] [23] [24] [25] [26] [27]. 
Furthermore, observation noise is not always normally distributed. The third 
drawback of this theoretical model is the ignorance of real-world sensor 
implementations. In practice, sensors read continuous-valued variables and 
convert them into binary streams after different stages of quantization (e.g. 
linear uniform PCM, Lloyd-Max quantizer or vector quantization [28] [29]), 
companding (e.g. A-Law and μ-Law for speech signals [30] [31]), and sample 
to bit mapping (e.g. Gray coding [32] [33]). 
 

The recent developments of practical source codes are typically 
applied to binary bitstreams after a digitization step. To fill this gap between 
the theoretical framework and the practical implementation, we assume that 
the source generates binary symbols, which is observed by sensor 𝑖𝑖 through a 
binary symmetric channel (BSC) with crossover probability 𝛽𝛽𝑖𝑖 . Namely, we 
have 𝑈𝑈𝑖𝑖 = 𝑆𝑆 + 𝐸𝐸𝑖𝑖 , 𝑆𝑆 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.5), 𝐸𝐸𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽𝑖𝑖), where 𝛽𝛽𝑖𝑖 =
𝑬𝑬[𝑃𝑃𝑃𝑃(𝑆𝑆 ≠  𝑈𝑈𝑖𝑖)] is the expected bit flipping probability from the common 
source to sensor i for a given source type and sensor implementation. This 

Figure 8-3 Multi-terminal source coding for sensors with direct and indirect 
observations. 
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model is very general and mimics the impact of noise and other non-linearity 
sources at different stages of the path from source to the representative binary 
bitstream. Therefore, this model has been widely adopted in various studies 
[34] [19] [35] [36] [37] [38]. With this correlation model, the aforementioned 
CEO model converts to a special cased called binary CEO (bCEO). 
 

8.2.2 Information-theoretic review 

In the CEO problem, the goal is to find the rate region ℛ∗(𝐷𝐷) =
⋃ 𝑅𝑅𝐷𝐷(𝑅𝑅1, 𝑅𝑅2, . . . , 𝑅𝑅𝐿𝐿)(𝑅𝑅1,𝑅𝑅2,…𝑅𝑅𝐿𝐿) , which includes all combination of rate L-tuples. 
Here, 𝑅𝑅𝑖𝑖  is the coding rate of sensor i and 𝑅𝑅𝐷𝐷(𝑅𝑅1, 𝑅𝑅2, . . . , 𝑅𝑅𝐿𝐿) represents all rate 
tuples for which there exist a joint-decoder capable of estimating the common 
source within a predefined distortion limit 𝐷𝐷(𝑛𝑛) = 1

𝑛𝑛
𝑬𝑬[ 𝑑𝑑(𝑆𝑆𝑛𝑛, 𝑆̂𝑆𝑛𝑛)] < 𝐷𝐷, for a 

given distance measure 𝑑𝑑(. , . ), when the codeword block length n is chosen 
large enough. One may also be interested in solving a simpler problem of 
minimizing the sum rate, which is defined as 𝑅𝑅 = ∑ 𝑅𝑅𝑖𝑖

𝐿𝐿
𝑖𝑖=1 , for a given target 

distortion threshold 𝐷𝐷. 
 

This problem is intensively investigated from the information-
theoretic perspective, yet the exact rate-distortion function for the CEO 
problem is not known in general [39]. The first information-theoretic result, 
reported by Toby Berger in [40], states that if the number of agents (sensors) 
approach infinity (𝐿𝐿 → ∞) and the agents are allowed to share their 
observations, then they are able to provide an accurate estimate of the 
common source symbol 𝑆𝑆 with a limited distortion based on a distortion rate 
function 𝐷𝐷(𝑅𝑅). As a special case, if the sum-rate 𝑅𝑅 exceeds the entropy of the 
common source 𝐻𝐻(𝑆𝑆), the decoder fully recovers the source symbol with an 
arbitrary low distortion, i.e. 𝑅𝑅 > 𝐻𝐻(𝑆𝑆) ⇒ 𝐷𝐷(𝑅𝑅) = 0. 
 

However, if the agents are not allowed to convene, which is the case 
in the CEO problem, there does not exist a finite value of the total rate 𝑅𝑅, for 
which even infinitely many agents can make the distortion 𝐷𝐷 arbitrarily small. 
It was shown that for an infinitely large number of agents, the distortion 
decays exponentially as sum-rate approaches infinity. This fact implies that in 
practical implementation of distributed coding with a limited number of 
sensors, we need to settle with an approximate source estimation and not seek 
an error-free source recovery. This phenomenon is due to the inherent 
uncertainty of indirect observations. In contrast, for direct observation, 
correlated sources can be fully recovered within a rate region defined by the 
famous Slepian-Wolf theorem [18]. A concrete characterization of rate-
distortion region, known as Berger-Tung rate region proposed in [41] based 
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on performing Gaussian quantization method on the observation bits and then 
applying Slepian-Wolf coding to the quantized the bits.  
 

An important variant of CEO problem is called Quadratic Gaussian 
CEO (QGCEO) problem, where the source and observation errors are 
identically and independently distributed (i.i.d.) Gaussian variables. The 
problem of finding distortion-rate for the QGCEO problem is studied from 
different perspectives including sum rate distortion function derivation [42] 
[43], computationally tractable sum-rate calculation [44], sum-rate loss due to 
lack of inter-sensor communications [45], multiple source estimation [46] [47] 
[48] and robust coding to recover both the common source and the sensor 
readings with a certain fidelity [49]. Extensions of these results to vector 
Gaussian CEO problem can be found in [50] [51] [52] [53]. 
 

The CEO problem can be generalized in the sense that the CEO is 
interested in estimating both common source data and sensors observations 
with arbitrary fidelity. If the maximum allowable distortions of observations 
reconstruction approach infinity meaning that the CEO does not care about the 
observation itself, this problem reduces to the classical CEO problem. On the 
other hand, if the maximum allowable distortions of the common source 
observations reconstruction approaches infinity, the problem is reduced to 
two-terminal direct observation case. The rate region for this general case is 
characterized in [49]. 
 

Another important variant with practical advantages is the binary 
CEO problem, as discussed earlier. Theoretical limits on the rate-distortion 
region for the bCEO problem is studied in [39] [54]. However, these results do 
not provide a closed-form expression for the rate distortion function and 
rather provide complex expressions for the upper and lower bounds on the 
rate distortion function. These expressions are complicated to quantify even 
for the special case of two sensors 𝐿𝐿 = 2 and equal observation error 𝛽𝛽1 =
𝛽𝛽2 = 𝛽𝛽, and consequently are not much useful in designing practical systems. 
 

In this book chapter, we will show how our simplified calculations for 
the end-to-end coding rate proposed in [55] can be used to configure a cluster 
of sensors for real-world applications to achieve an acceptable level of 
accuracy. This method is based on finding a polymatroid region for the rates 
that fully recovers the correlated sensor readings instead of finding the rates 
required for recovering the common data source [56] [57]. 
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8.3 PRACTICAL CODING DESIGN FOR THE BINARY CEO PROBLEM 

8.3.1 Distributed source coding vs joint coding 

In order to elucidate the concept of distributed source coding, here we 
present a simple example to show its contrast with joint coding. The main 
distinction between the two methods is the exchange of information among 
sensors. Consider two sensors with correlated binary inputs. Each sensor 
reading 𝑼𝑼𝑖𝑖  is a sequence of three bits 𝑼𝑼𝑖𝑖 = [𝑈𝑈𝑖𝑖1𝑈𝑈𝑖𝑖2𝑈𝑈𝑖𝑖3], therefore it takes 23 =
8 options 𝑼𝑼𝑖𝑖 ∈  𝒰𝒰 = {𝑆𝑆0, … , 𝑆𝑆7} as depicted in Figure 8-4. Based on the 
observation model, 𝑈𝑈1 and 𝑈𝑈2 can differ at most in one bit (i.e. 
𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑈𝑈1, 𝑈𝑈2) ≤ 1). The direct implication of this correlation model is that 
for each realization of 𝑼𝑼1, there are only 4 possibilities for 𝑼𝑼2, which include 
𝑼𝑼2 = 𝑼𝑼1 ⊕  𝑬𝑬, where 𝑬𝑬 = {[000], [001], [010], [001]}. Consequently, the 
entropy of 𝑼𝑼1 is 𝐻𝐻(𝑼𝑼1) = 3 bits and the conditional entropy of 𝑼𝑼2 given 𝑼𝑼1 is 
𝐻𝐻(𝑼𝑼2|𝑼𝑼1) = 𝐻𝐻(𝑼𝑼1 ⊕  𝑬𝑬|𝑼𝑼1) = 𝐻𝐻(𝑬𝑬) = 2 bits. The practical implementations 
of joint coding is straightforward. Sensor 1 sends the plain reading 𝑼𝑼1 with 3 
bits to the destination. Sensor 2 receives 𝑼𝑼1 and calculates 𝑬𝑬 = 𝑼𝑼1 ⊕ 𝑼𝑼2 and 
then maps it into two bits [𝐸𝐸1𝐸𝐸2] and sends the result to the receiver. The 
receiver performs sequential decoding (also called onion pealing) by 
determining 𝑼𝑼1 first and then calculating 𝑬𝑬 based on received bits [𝐸𝐸1𝐸𝐸2]. 
Subsequently, it calculates 𝑼𝑼2 = 𝑼𝑼1 ⊕  𝑬𝑬 (Figure 8-4a). 
 

Lossless distributed coding relies on the famous Slepian-Wolf 
theorem, which suggest that we should be able to implement distributed 
coding of rates (𝑅𝑅1, 𝑅𝑅2) = �𝐻𝐻(𝑼𝑼1), 𝐻𝐻(𝑼𝑼2|𝑼𝑼1)� = (3,2) without inter-sensor 

Figure 8-4 Joint coding versus distributed coding for correlated binary sources. 
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communication such that the receiver can perfectly recover 𝑼𝑼1 and 𝑼𝑼2. 
Consider the following implementation, where sensor 1 sends its plain reading 
𝑈𝑈1 using three bits as before. Sensor 2, however, divides the space of 8 possible 
outcomes into 4 disjoint partitions called cosets. Each coset 𝑆𝑆𝑁𝑁𝑖𝑖  encompasses 
two symbols with Hamming distance of 3. Each coset is mapped to a 2-bit 
sequence 𝐶𝐶 = [𝐶𝐶1, 𝐶𝐶2] called syndrome as shown in Figure 8-4b. The receiver 
first identifies 𝑼𝑼1 from the received bits [𝑈𝑈11𝑈𝑈12𝑈𝑈13] , and them identifies the 
coset 𝑆𝑆𝑁𝑁𝑖𝑖  based on the received syndrome bits 𝐶𝐶 = [𝐶𝐶1, 𝐶𝐶2]. Each coset includes 
two symbols and the one with a lower Hamming distance to 𝑼𝑼1 is mapped to 
𝑼𝑼2. This simple technique is a variant of a more general technique called 
Syndrome based distributed coding [58]. 
 

8.3.2 Review on Practical DSC Methods 

Various practical implementations of DSC are proposed in the 
literature [11] [59] [60]. The first realization of DSC was introduced by 
Ramchandran, et. al. employing the concept of Syndrom based coding [58]. 
Afterwards, different implementations of DSCs were developed based on the 
more powerful channel codes including Low Density Parity Check Codes 
(LDPC) [19], turbo codes [35] [61] [62] [63] [64], turbo codes with pre-
puncturing [65], turbo codes with post puncturing [37], Irregular Repeat 
Accumulate (IRA) codes [66] , and Low Density Generator Matrix Codes 
(LDGM) [67] [68]. 
 

Similar to point to point communications, combining the DSC stage 
with the subsequent channel coding stage to develop a single encoder called 
Distributed Joint Source Channel Coding (D-JSCC) is more efficient in terms of 
complexity and implementation cost. The most reported realizations of D-
JSCCs are based on LDPC and turbo like codes [69] [70] [71] [63] [72]. 
However, these methods have not yet widely utilized in practice mainly due to 
implementation issues including the need for a prior knowledge of the 
observation model, the requirement of time-invariant observation noise, 
decoding complexity, sensitivity to a sensor failure and complication of 
scalability to a large number of sensors [11] [63] [36] [57] [71] [69].  
 

In this chapter, we propose a D-JSCC method, which provides a 
superior error recovery performance compared to the state of the art D-JSCC 
methods and enjoys a simple encoder and low-complexity decoder structure. 
The proposed scheme is robust to sensor failures and continues to operate if a 
sufficient number of sensors are still operational. Due to the linear complexity 
of the proposed decoding algorithm in the number of sensors, this method is 
easily scalable to a large number of sensors. The bimodal operation eliminates 
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the unnecessary decoding iterations and reduces the complexity of the 
decoder by a factor of 10 to 20 in some cases. Finally, by employing a novel 
implementation of observation parameter extraction, no prior knowledge is 
required about the observation accuracy of sensors and the proposed system 
works even in time-varying observation models. 
 

The following sections elaborate on the details of the proposed 
method and offer solutions for finding the optimal number of sensors, 
analyzing the convergence of the decoding algorithm and quantifying the 
performance of the system, when integrated with relaying techniques. 

8.4 D-PCCC WITH BI-MODAL DECODER 

The proposed scheme is based on utilizing a distributed version of 
parallel concatenation of convolutional codes (D-PCCC) in the sensors and an 
adaptive bimodal iterative decoder in the receiver as follows. 

8.4.1 Encoder Structure 

Each sensor is equipped with a pseudo-random interleaver, a RSC 
encoder and a puncturing module, which collectively form a distributed 
version of PCCC encoder as depicted in Figure 8-5. The rate of sensor 𝑖𝑖 after 
puncturing the output codeword is 𝑅𝑅𝑖𝑖 , where we set 𝑅𝑅𝑖𝑖 = 𝑅𝑅, ∀ 𝑖𝑖 ∈ {1,2, . . , 𝐿𝐿} for 
homogeneous sensors unless otherwise specified. Here, the coding rate per 
sensor can be less than or greater than 1 in contrast to a typical individual 
encoder. An important distinction with the conventional PCCC scheme is that 
the input bits of each constituent encoder correspond to the noisy versions of 
common source bits, and hence may be slightly different. 
 

 
 

Figure 8-5 Coding Scheme: Each sensor includes an interleaver, a RSC encoder 
and a puncturing module, which collectively form D-PCCC scheme. Figure is 
from  
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We follow the BSC observation model, as described in section 8.2.1. 
We note that the independence of observation errors for different sensors 
implies that the pairwise correlation between the observations of sensors i and 
j is modeled as a BSC channel with cross over probability 𝛽𝛽𝑖𝑖𝑖𝑖 = 1 + 2𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 −
𝛽𝛽𝑖𝑖 − 𝛽𝛽𝑗𝑗 , which simplifies to 1 + 2𝛽𝛽2 − 2𝛽𝛽 for equal observation error 𝛽𝛽1 =
𝛽𝛽2 = ⋯ = 𝛽𝛽𝐿𝐿 = 𝛽𝛽. For small values of 𝛽𝛽, we can use the 𝛽𝛽𝑖𝑖𝑖𝑖 ≈  1 − 2𝛽𝛽 
approximation [73] [74].        

8.4.2 Decoder Structure 

Inspired by the encoder structure, we develop a Multiple-branch 
Turbo Decoder (MTD) at the receiver with some modifications and additional 
features to accommodate the distributed nature of the encoder, as depicted in 
Figure 8-6. 
 

The decoder includes 𝐿𝐿 constituent Soft-Input Soft-Output (SISO) 
decoders operate in parallel. Each constituent decoder executes the BCJR Max-
Log-MAP algorithm using 𝑙𝑙𝑙𝑙𝑙𝑙(𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑦𝑦) ≈ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) approximation for 
reduced complexity [75] that iteratively decodes the received bits in order to 
recover the relevant sensors observation bits [74].  
 

Each constituent decoder receives a-priori LLRs denoted by 𝐴𝐴𝑖𝑖
(𝑡𝑡)(𝑘𝑘) 

for 𝑘𝑘 = 1,2, … , 𝑁𝑁 at iteration t and calculates the a-posteriori LLRs denoted by 
𝐷𝐷𝑖𝑖

(𝑡𝑡)(𝑘𝑘). Here, 𝑁𝑁 is the length of dataword, i.e. the number of information bits. 
The extrinsic LLRs are defined as 𝐸𝐸𝑖𝑖

(𝑡𝑡)(𝑘𝑘) = 𝐷𝐷𝑖𝑖
(𝑡𝑡)(𝑘𝑘) − 𝐴𝐴𝑖𝑖

(𝑡𝑡)(𝑘𝑘). In contrast to the 
standard MTD, here the information bits of each constituent decoder represent 
the corresponding sensor's observation bits, therefore the extrinsic LLRs 
converge to the observation bits rather than the common source bits, which 

Figure 8-6 Proposed bi-modal parallel-structure MTD decoder equipped with an 
observation parameter extraction module. Figure is from [83]. 
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may cause convergence issues. The following is a list of modifications made to 
address this issue: 
 

− Decoder initialization: In the first iteration, all SISO decoders are 
initialized with the LLRs that correspond to the observation bits of the 
respective sensor, which is in contrast with the classic MTD decoder, 
where only one RSC decoder is initialized with the LLRs of the common 
information bits.  

− LLR scaling: In a classical MTD, the input LLRs for decoder 𝑖𝑖, 𝐴𝐴𝑖𝑖
(𝑡𝑡)(𝑘𝑘) are 

calculated as the average of the extrinsic LLRs of all other RSC decoders 
(i.e. 𝐴𝐴𝑖𝑖

(𝑡𝑡)(𝑘𝑘)  = ∑ 𝐸𝐸𝑗𝑗
(𝑡𝑡−1)(𝑘𝑘)𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠ 𝑖𝑖 ). In the proposed scenario, the 
extrinsic LLRs represent the corresponding sensor's observation bits. 
Therefore, we define a new set of extrinsic LLRs to represent the 
likelihood of the common source bits as follows:  

 

𝐸𝐸𝑖𝑖,𝑆𝑆
(𝑡𝑡)(𝑛𝑛)& = 𝑙𝑙𝑙𝑙𝑙𝑙2 �

𝑃𝑃𝑃𝑃�𝑆𝑆(𝑛𝑛) = 1�𝑼𝑼𝑖𝑖�

𝑃𝑃𝑃𝑃�𝑆𝑆(𝑛𝑛) = 0�𝑼𝑼𝑖𝑖�
� =  𝑙𝑙𝑙𝑙𝑙𝑙2 �𝛽𝛽�  + �1−𝛽𝛽�� 2𝐸𝐸𝑖𝑖

(𝑡𝑡)(𝑛𝑛)

�1−𝛽𝛽��+𝛽𝛽�2𝐸𝐸𝑖𝑖
(𝑡𝑡)(𝑛𝑛)

�,          (1) 

 
which is the non-linearly scaled versions of the original extrinsic LLRs, 
𝐸𝐸𝑖𝑖

(𝑡𝑡)(𝑛𝑛). Here, 𝑼𝑼𝑖𝑖 = [𝑈𝑈𝑖𝑖(1), … , 𝑈𝑈𝑖𝑖(𝑁𝑁)] is the observation vector of 
sensor 𝑖𝑖 and 𝛽̂𝛽 is the estimate of 𝛽𝛽. The a-priori LLRs of decoder 𝑖𝑖 is 
then calculated as follows: 

𝐴𝐴𝑖𝑖
(𝑡𝑡) = � 𝐸𝐸𝑖𝑖,𝑆𝑆

(𝑡𝑡−1)
𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

= � 𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝛽̂𝛽  +  �1 − 𝛽̂𝛽� 2𝐸𝐸𝑖𝑖

(𝑡𝑡−1)

�1 − 𝛽̂𝛽� + 𝛽̂𝛽2𝐸𝐸𝑖𝑖
(𝑡𝑡−1) �

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 

 

                                               = 𝑙𝑙𝑙𝑙𝑙𝑙 �∏ 𝛽𝛽�  + �1−𝛽𝛽�� 2𝐸𝐸𝑖𝑖
(𝑡𝑡−1)

�1−𝛽𝛽��+𝛽𝛽�2𝐸𝐸𝑖𝑖
(𝑡𝑡−1)

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

� ,                        (2) 

 
The details of derivations are provided in [76].  
 

− Observation accuracy estimation: In order to accommodate time-
variant and unknown observation error parameter 𝛽𝛽, an observation 
error estimation module is developed to estimate 𝛽𝛽 by the receiver. We 
first estimate the transmitted information symbol 𝑥𝑥�𝑖𝑖(𝑘𝑘) by hard-
thresholding the output LLRs at the end of each iteration (i.e. 𝑥𝑥�𝑖𝑖(𝑘𝑘) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐷𝐷𝑖𝑖(𝑘𝑘)]). Then, we use the following estimator: 

𝛽̂𝛽 ≈ 1
2𝐿𝐿𝐿𝐿(𝑁𝑁−1)

∑ ∑ ∑ 𝜌𝜌𝑖𝑖,𝑗𝑗(𝑘𝑘)𝐿𝐿
𝑘𝑘=1

𝑁𝑁−1
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁
𝑖𝑖=1 , 𝜌𝜌𝑖𝑖,𝑗𝑗(𝑘𝑘) =

�𝑥𝑥�𝑖𝑖(𝑘𝑘)−𝑥𝑥�𝑗𝑗(𝑘𝑘)�

2
,         (3) 
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which is based on estimating the pairwise correlation followed by averaging 
over all pairs of sensors. It is easy to show that 𝛽̂𝛽 is normally distributed with 
mean 𝛽𝛽 and variance 2𝛽𝛽(1−𝛽𝛽)�1−2𝛽𝛽+2𝛽𝛽2�

𝐿𝐿𝐿𝐿(𝑁𝑁−1)
≈ 2𝛽𝛽

𝐿𝐿𝐿𝐿(𝑁𝑁−1)
. Hence, it approaches the 

observation error parameter 𝛽𝛽 for large enough 𝑁𝑁 and 𝐿𝐿 values. 
 

− Decision phase: In the last iteration, hard decision is performed based 
on the average of a-posteriori LLRs, 𝐷𝐷(𝑎𝑎𝑎𝑎) = 1

𝑁𝑁
∑ 𝐷𝐷𝑖𝑖

𝑁𝑁
𝑖𝑖=1  instead of the 

output LLRs of a particular SISO decoder 𝐷𝐷𝑖𝑖 , for the similar reason of 
avoiding bias to a particular encoder/decoder pair. 
 

− Bimodal operation: The last modification is using bimodal operation 
(iterative and non-iterative modes) as detailed in the following section. 

 

8.4.3 Bimodal Decoding Operation 

In a majority of the previously reported D-JSCC schemes for correlated 
sensors, iterative decoding is deployed in order to exploit the correlation 
among sensors' observations~ [11] [77]  [71] [78] [63] [69], [79] [57] [80].  
 

In this section, we revisit the presumption of superiority of iterative 
decoding for the proposed system by answering the following question, 
“Under what conditions does the iterative decoding improve the estimation 
accuracy? “ 
 

An intuitive conjecture is that iterative decoding is beneficial when the 
observation accuracy of sensors and consequently their pairwise correlations 
are high enough. In fact, the uselessness of iterative decoding, when the 
correlation among sensor observations is relatively low, is noticed by former 
researchers in several studies including [65] [37] [64]. To the best of our 
knowledge, however, no study has been conducted to characterize this 
phenomenon. In this section, we propose a method to obtain the convergence 
region of the decoder, where the iterative decoding is beneficial. 
 

Consider the block diagram of the decoder depicted in Figure 8-6. The 
idea is to verify whether the estimates of the common source bits provided by 
a constituent decoder improve during one full iteration (from point 𝑃𝑃1 to 𝑃𝑃2 in 
Figure 8-6) or not. The technique we use here is a modified version of Extrinsic 
Information Transfer (EXIT) charts. 
 

EXIT chart is a powerful technique to quantify the improvement of 
LLRs' relevance to the information bits during one decoding iteration by a 
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constituent decoder [81]. A typical EXIT chart for a standard turbo decoder 
(𝛽𝛽 = 0) is depicted in Figure 8-7. However, its conventional form is not 
applicable to our system model noting the fact that the extrinsic LLRs of each 
decoder converge to the corresponding sensor's observation, and not to the 
common source bits. 
 

 
 

Here, we provide the sketch of the modified EXIT chart technique that 
is used to find the convergence region. Interested users are referred to [82] 
and [83] for more details. To develop an EXIT chart, we note that the input 
LLRs received from the channel are Normally distributed, hence we have:  

𝐴𝐴(1) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃(𝑋𝑋 = +1|𝑌𝑌)
𝑃𝑃𝑃𝑃(𝑋𝑋 = −1|𝑌𝑌)  = 𝜇𝜇𝑌𝑌 𝑌𝑌 + 𝑛𝑛𝑌𝑌, 

𝑛𝑛𝑌𝑌 ∼  𝒩𝒩(0, 𝜎𝜎𝑌𝑌
2),    𝜎𝜎𝑌𝑌

2 = 2𝜇𝜇𝑌𝑌 = 4/𝜎𝜎𝑁𝑁
2,                                         (4) 

 
where 𝑋𝑋 and 𝑌𝑌 denote the BPSK modulated transmitted and received bits. It 
has been shown that if both channel observations and input LLRs follow 
Gaussian distribution, a MAP-family decoder with a fairly large frame length 
generates a-posteriori LLRs, which tend to follow a Gaussian distribution [84]. 
The intuitive justification is based on applying the weak law of large numbers 
to the summands over the random like decoder trellis structure. Moreover, 
extensive simulations confirm that relation (4) holds for the extrinsic LLRs as 
well [81]. Consequently, both a-priori and extrinsic LLRs, A and E, can be 
written in the following format: 

𝐸𝐸 = 𝜇𝜇𝐸𝐸  𝑌𝑌 + 𝑛𝑛𝐸𝐸 ,   𝑛𝑛𝐸𝐸 ∼ 𝒩𝒩(0, 𝜎𝜎𝐸𝐸
2),    𝜇𝜇𝐸𝐸  = 𝜎𝜎𝐸𝐸

2

2
,                                    (5) 

Figure 8-7 Conventional EXIT chart for the extreme case of 
complete observation accuracy (𝜷𝜷 =  𝟎𝟎,    𝑬𝑬𝒃𝒃/𝑵𝑵𝟎𝟎   =  𝟏𝟏 dB). 
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Now, if 𝑉𝑉 denotes the BPSK modulated version of the source bit, the 

input LLR (A) exhibits the following bimodal distribution: 

𝑃𝑃𝐴𝐴(𝜁𝜁|𝑣𝑣) =  ∑ 𝑃𝑃𝐴𝐴(𝜁𝜁|𝑥𝑥)𝑃𝑃(𝑥𝑥|𝑣𝑣)𝑥𝑥=−1,+1 = 1
√2𝜋𝜋𝜎𝜎𝐴𝐴

�𝛽̅𝛽𝑒𝑒
−

�𝜁𝜁−𝜇𝜇𝐴𝐴 𝑣𝑣�2

2𝜎𝜎𝐴𝐴
2 +

                                                           𝛽𝛽𝑒𝑒
−

�𝜁𝜁+𝜇𝜇𝐴𝐴 𝑣𝑣�2

2𝜎𝜎𝐴𝐴
2 � ,     𝛽̅𝛽 = 1 − 𝛽𝛽,                   (6) 

which is called the 𝑚𝑚𝑡𝑡ℎ order Binomial-Gaussian distribution with parameter 
set (𝑚𝑚 = 2, 𝛽𝛽, 𝜇𝜇, 𝜎𝜎2) in this writing. This distribution for 𝛽𝛽 = 0 boils down to a 
Gaussian distribution as expected. Consequently, the Bitwise-Mutual 
Information (BMI), between the a-priori LLRs and the source bits are 
calculated as: 
 

𝐼𝐼(𝐴𝐴;  𝑉𝑉) =  1 − 1
√2𝜋𝜋𝜎𝜎𝐴𝐴

 ∫ �𝛽̅𝛽𝑒𝑒
−

�𝜁𝜁−𝜇𝜇𝐴𝐴 𝑣𝑣�2

2𝜎𝜎𝐴𝐴
2 +∞

−∞

                                                            𝛽𝛽𝑒𝑒
−

�𝜁𝜁+𝜇𝜇𝐴𝐴 𝑣𝑣�2

2𝜎𝜎𝐴𝐴
2 � 𝑙𝑙𝑙𝑙𝑙𝑙 � 1+𝑒𝑒

−2 
𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

2 𝜁𝜁

𝛽𝛽�+𝛽𝛽𝑒𝑒
−2 

𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

2 𝜁𝜁
� 𝑑𝑑𝑑𝑑.     (7) 

For more than two constituent decoders (𝑚𝑚 > 2), an additional layer 
of averaging is required after calculating extrinsic LLRs. The resulting 
equations are more complex for 𝑚𝑚 > 2 and are omitted here for the sake of 
brevity [83]. Note that 𝐼𝐼(𝐴𝐴;  𝑉𝑉) is a function of β and channel SNR. A typical 
𝐼𝐼(𝐴𝐴;  𝑉𝑉) is depicted in Figure 8-8. 
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Similar equations hold for extrinsic LLRs. Note that in contrast to the 

conventional turbo decoder, here 𝐼𝐼(𝐴𝐴; 𝑉𝑉) and 𝐼𝐼(𝐸𝐸; 𝑉𝑉) do not approach 1, even 
for extremely large LLR values 𝜎𝜎𝐴𝐴 → ∞, rather they approach 1 − 𝐻𝐻(𝛽𝛽) [83].  
 

In order to derive modified EXIT chart curves, we generate random 
source bits, and then we pass the source bits through a BSC channel with 
crossover probability β to obtain the simulated observation bits. Subsequently, 
we generate a-priori LLRs for the first iteration according to (4) for a given 
channel SNR. Then, we execute the decoding algorithm and obtain extrinsic 
LLRs (𝐸𝐸) after proper scaling and averaging as mentioned in section 8.4.2. The 
parameters of extrinsic LLRs (𝜇𝜇𝐸𝐸, 𝜎𝜎𝐸𝐸

2) are estimated afterwards by fitting a 
Gaussian distribution. Finally, we calculate 𝐼𝐼(𝐴𝐴; 𝑉𝑉) and 𝐼𝐼(𝐸𝐸; 𝑉𝑉) using (7).  
 

Plotting 𝐼𝐼(𝐸𝐸; 𝑉𝑉) vs 𝐼𝐼(𝐴𝐴; 𝑉𝑉) as well as the reverse curves, i.e. 𝐼𝐼(𝐴𝐴; 𝑉𝑉) vs 
𝐼𝐼(𝐸𝐸; 𝑉𝑉) presents the modified EXIT charts as depicted in Figure 8-9. If the 
direct curve falls above the unit-slope line and presents a positive initial slope, 
then iterative decoding is beneficial, since the BMI between the LLRs and the 
source bits exhibit improvement for a decoding cycle. The point at which the 
direct and reverse curves meet presents the final achievable error recovery 
performance and defines the number of useful iterations. The closer this point 
to the upper right corner [𝐼𝐼(𝐴𝐴; 𝑉𝑉), 𝐼𝐼(𝐸𝐸; 𝑉𝑉)] = [1,1], the lower the error floor. 
The general trend obtained from this figure is that lower channel SNRs and 
higher observation accuracies are suggestive of more advantage for iterative 
decoding. 
 

Figure 8-8 Bitwise mutual information between the a-priori LLRs and the source data as a 
function of noise variance 𝝈𝝈𝟐𝟐 and observation error 𝜷𝜷. The left and right hand side figures 
present the 2D and 3D views. Figure is from [76]. 
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In order to find the convergence regions, we develop (𝛽𝛽, SNR) grids 
and generate EXIT charts for all combinations of (𝛽𝛽, SNR). Then, we identify 
the conditions that yield a positive initial slope of 𝜖𝜖 for the EXIT chart direct 
curve. A sample convergence region is shown in Figure 8-10. 
 
 
 
 
 
 

Figure 8-9 Modified EXIT charts for different observation 
accuracies (Number of sensors is 𝑳𝑳 = 𝟐𝟐). Figure is from [83]. 
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We note that developing convergence region for the (𝛽𝛽, SNR) grid is a 
time consuming task, but it is performed only once per system and is revealed 
to the decoder. Once the decoder receives a new multi-frame from the sensors, 
it estimates the channel SNR and the observation accuracy parameter 𝛽𝛽. If the 
estimated (SNR, 𝛽𝛽) pair falls within the convergence region, the iterative mode 
is chosen, otherwise LLR exchange is bypassed to avoid unnecessary 
iterations. 

8.5 PERFORMANCE ANALYSIS 

To confirm the performance improvement obtained by the mode 
selection mechanism, we performed extensive Monte Carlo simulations for the 
proposed scheme (D-PCCC) with the following parameters (𝑀𝑀 =
2000~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑁𝑁 = 8 and 𝛽𝛽 =  0.1). We compare the results against similar 
representative methods including distributed turbo coding in [71] and D-
LDGM codes in [57] under equivalent conditions.  
The error probability of AWGN channel 𝑃𝑃𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑄𝑄(√2𝑆𝑆𝑆𝑆𝑆𝑆) is used to 
approximate the BSC channel used in [71] with an equivalent AWGN channel. 
The energy per source bit is calculated as 𝐸𝐸𝑏𝑏

𝑁𝑁0
= 𝑁𝑁

𝑅𝑅𝑖𝑖
𝐸𝐸𝑠𝑠/𝑁𝑁0. Equivalent coding rate, 

𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑁𝑁
𝑅𝑅𝑖𝑖

 is used to make a fair comparison choices between different schemes, 
where 𝑁𝑁 is the number of sensors. 
 

Figure 8-10 Convergence region of iterative decoding algorithm 
in terms of channel SNR and β for ε = 0.1 and  ε = 0.01. Here ε 
is the level of minimum improvement due to iterative decoding. 
Outside the convergence region, non-iterative algorithm is 
selected. Figure is from [83]. 
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The comparison results show that in the low observation accuracy 
scenario, 𝛽𝛽 = 0.1, the proposed scheme performs close to the more complex 
LDGM codes, with performance degradation of less than 1dB. The superiority 
of the proposed coding scheme over the classical DTC is shown as well. This 
performance improvement is achieved with lower decoding complexity, when 
the decoder switches to the non-iterative mode. The order of decoding 
complexity reduction with respect to classical DTC can be as high as the typical 
number of decoding iterations, which is 10 to 20. 
 

 
 

8.5.1 Optimal number of sensors 

Apparently, using a higher number of sensors at each cluster reduces 
the estimation error, but on the other hand, it increases the bandwidth usage 
and the decoding complexity. A key question is “What is the minimum number 
of sensors that yields a desired performance?”  In order to answer this 
question, we provide an approximate information-theoretic analysis. We note 
that the rate region of the bCEO problem even for the simplest case of two 
sensors is not yet characterized in terms of a closed-form expression [39] [54]. 
Therefore, the proposed simple method is valuable in practical system design.  
 

In this regard, we first note that the virtual channel from the common 
source to the final destination is the cascade of a broadcast BSC channel and a 
set of parallel AWGN channels. It can be shown that for a cluster of N sensors 

Figure 8-11 BER performance comparison of the proposed 
scheme with the state of the art D-JSCC methods. 
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with transmit power 𝑃𝑃, the observation error 𝛽𝛽 and the noise variance 𝜎𝜎𝑁𝑁
2, the 

capacity of this virtual channel is [55]: 
 
𝐶𝐶 = 1

2�2 𝜋𝜋 𝜎𝜎𝑁𝑁
2 �

𝑁𝑁
2

∫ �(𝛾𝛾0  + 𝛾𝛾1) 𝑙𝑙𝑙𝑙𝑙𝑙 �𝛾𝛾0 +𝛾𝛾1
2

�  − 𝛾𝛾0 𝑙𝑙𝑙𝑙𝑙𝑙 𝛾𝛾0 − 𝛾𝛾1 𝑙𝑙𝑙𝑙𝑙𝑙 𝛾𝛾1� 𝑑𝑑𝑦𝑦𝑁𝑁𝒴𝒴𝑛𝑛 ,        

 (8) 
where we have:  

 
𝛾𝛾𝛼𝛼

= � �𝑁𝑁
𝑘𝑘 �

𝑁𝑁

𝑘𝑘=0

𝛽𝛽𝑘𝑘(1

− 𝛽𝛽)𝑁𝑁−𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 �−
∑ �𝑦𝑦𝑖𝑖 + (2𝛼𝛼 − 1)√𝑃𝑃�

2𝑘𝑘
𝑖𝑖=0 + ∑ �𝑦𝑦𝑖𝑖 − (2𝛼𝛼 − 1)√𝑃𝑃�

2𝑁𝑁
𝑖𝑖=𝑘𝑘+1  

2𝜎𝜎𝑁𝑁
2 � 

                            (9) 
 

 
Therefore, the channel capacity is 𝐶𝐶 =  𝑓𝑓𝑐𝑐 (𝑁𝑁, 𝑃𝑃

𝜎𝜎𝑁𝑁
2 , 𝛽𝛽), which is a closed-

form function of the number of sensors (N), the channel SNR ( 𝑃𝑃
𝜎𝜎𝑁𝑁

2 ) and the 

observation error parameter (𝛽𝛽). Now, note the fact that the BER floor is fully 
defined by the number of sensors in an error-free environment as follows: 
 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(𝑚𝑚𝑚𝑚𝑚𝑚) =

⎩
⎨

⎧ ∑ �𝑁𝑁
𝑘𝑘 �𝑁𝑁

𝑘𝑘=𝑁𝑁+1
2  

𝛽𝛽𝑘𝑘 + (1 − 𝛽𝛽)𝑁𝑁−𝑘𝑘                                          𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜

1
2

�
𝑁𝑁
𝑁𝑁
2

� 𝛽𝛽
𝑁𝑁
2 (1 − 𝛽𝛽)

𝑁𝑁
2 + ∑ �𝑁𝑁

𝑘𝑘 �𝑁𝑁
𝑘𝑘=𝑁𝑁

2 +1 
𝛽𝛽𝑘𝑘 + (1 − 𝛽𝛽)𝑁𝑁−𝑘𝑘 𝑁𝑁 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

     (10) 

 
Based on the channel-coding theorem, there exist an encoder with 

rate 𝑅𝑅 ≤  𝐶𝐶 that can be employed by the source for an error-free transmission 
of information bits to the common destination. Now, we conjecture that if we 
employ a proper coding technique of rate 𝑅𝑅 ≤  𝐶𝐶 at the sensors, the final 
recovery error approaches the error floor, which is the best achievable error 
probability. Based on this argument, for a given set of system conditions 𝛽𝛽, 𝑃𝑃

𝜎𝜎𝑁𝑁
2 , 

𝑅𝑅, we can obtain the optimal number of sensors 𝑁𝑁 by solving 𝑅𝑅 = 𝑓𝑓𝑐𝑐(𝑁𝑁, 𝑃𝑃
𝜎𝜎𝑁𝑁

2 , 𝛽𝛽). 

This approach is demonstrated in Figure 8-12. 
In Figure 8-12a, the channel capacity is plotted for a fixed observation 

error parameter 𝛽𝛽 = 0.01. The capacity is an increasing function of the channel 
SNR. If a certain value of capacity is desired, the minimum required SNR level 
is less for a higher number of utilized sensors. For instance, to achieve a 
capacity of 1/2 bits/transmission, the required SNR values for N=2,3,4,5 
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sensors are -2.570 dB, -4.366 dB, -5.628 dB, and -6.621 dB, respectively. In 
another interpretation, for power constrained sensors (limited SNRs), this 
graph can be used to determine the minimum number of sensors to achieve a 
certain level of capacity. For instance, at least N=4 sensors are required to 
achieve a capacity of 1/2  bits/transmission at SNR=-5 dB. This is verified by 
extensive Monte Carlo simulations for (𝛽𝛽 = 0.01, 𝑁𝑁 = 256 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑖𝑖 = 1

2
 for 

different number of sensors as depicted in Figure 8-12b, where the decoder 
reaches its error floor at SNR=-5 dB if at least 4 sensors are utilized in the 
system. 
 

8.6 EXTENSION TO MULTI-HOP NETWORKS 

So far, a collocated network scenario is considered, where all sensors 
directly communicate to a data fusion center. This scenario does not cover 
many applications, where the use of multi-hop communication is unavoidable 
due to a long distance between the source and data fusion center. The question 
here is how to extend the obtained results to such cases. 
 

In order to address this requirement, we propose to use the idea of 
inner channels by replacing the multi-hop channel from each sensor to the 
fusion center as a BSC channel with an equivalent crossover probability.  
 

Figure 8-12 a) Information capacity of system vs observation accuracy (BSC crossover probability) 
and channel quality (SNR) for different number of sensors. b) The BER  performance of the proposed 
coding scheme with different number of sensors. In both figures, 𝜷𝜷 = 𝟎𝟎. 𝟎𝟎𝟎𝟎. Figures are from [55].  
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For instance, in [85], a two-tiered network, where the sensors at each 

cluster communicate to the base station through two intermediate relay nodes 
is considered (Figure 8-13a). Utilizing two super nodes (also called cluster 
heads) as relay nodes has an obvious advantage of robustness to cluster head 
failure in practice. A Demodulate and Forward (DMF) relaying method 
assisted by distributed version of Space Time Block Codes (D-STBC) is utilized 
in order to improve the BER performance and overcome the potential fading 
effects. 
 

Suppose that the total transmission power 𝑃𝑃 is divided between the 
two tiers (sensors and super nodes) with a ratio of 𝛼𝛼. As such, each sensor 
consumes 𝛼𝛼 𝑃𝑃

𝑁𝑁
 and each relay node consumes (1 − 𝛼𝛼) 𝑃𝑃

2
. The inner channel 

error probability can be calculated as follows [85]:  
 

𝑝𝑝𝑒𝑒
(𝑖𝑖𝑖𝑖) = 1

4(𝛼𝛼 𝛾𝛾+1)
 + 1

2( 𝜂𝜂 𝛾𝛾+2)2  − 1
4(𝛼𝛼 𝛾𝛾+1)(𝜂𝜂 𝛾𝛾+2)2,                             (11) 

where we have: 

(a) 

(b) 

Figure 8-13 a) System model for two-tiered double-sink wireless sensor network. b) Channel 
coefficients for the communication links from sensors to the base station via two super 
nodes.. Figure is from [85]. 
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𝛾𝛾 = 𝑃𝑃

𝑁𝑁
,   𝛾𝛾1 = 𝛼𝛼 𝛾𝛾,       𝛾𝛾2  = 𝜂𝜂 𝛾𝛾,         𝜂𝜂 = 3𝛼𝛼𝛼𝛼�

2 𝛼𝛼+ 1
.                            (12) 

 
Figure 8-14 presents the impact of power allocation on inner channel 

error probability. Despite STBC assisted Amplify and Forward (AF) relaying, 
where the optimality achieved if the total power is equally divided between 
the two tiers (sensors and relays), the performance curve of DMF relaying 
mode is not symmetric. Dashed and solid lines in this figure present analytical 
and simulation results for the resulting error probability as a function of power 
allocation parameter α. The optimal power allocation scenario can be chosen 
based on the average SNR value of the system, 𝑃𝑃

𝑁𝑁1
.  

 

We complete this section by comparing the end-to-end error 
probability for the basis scenario with one and two relay nodes (cluster heads) 
with and without STBC coding in presence of channel fading effect in Figure 8-
15.  
 

It is shown that using two super-nodes increases the BER 
performance by about 2~3 dB due to the space diversity gain. Also, about 1 dB 
additional gain is obtained using D-STBC due to the space-time diversity. All 
schemes ultimately reach the error floor for extremely large SNR values, which 
is corresponding to the error-free communication as calculated in (10). 
We finally note that the concept of inner channel is general and similar 
performance analysis and power allocation policies can be applied to other 
network configurations. 
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Figure 8-14 Inner channel error probability vs power allocation 
parameter α. Figure is from [85]. 

Figure 8-15 Comparison of system performance for different number of 
super-nodes, with and without STBC coding at super-nodes (𝑵𝑵 = 𝟒𝟒). 
Figure is from [85]. 



8 Information-flow in hard to reach areas 

8.7 DISCUSSIONS AND FUTURE DIRECTIONS  

This chapter explores various algorithms designed by the coding 
research community to realize compression and error recovery in WSNs with 
partially accurate and remotely deployed sensors. Despite their promising 
theoretical performances, most of these algorithms are not well suited for 
practical applications due to a number of drawbacks. In this regard, a practical 
and implementation-friendly solution is reviewed for this problem. 
 

Previously reported algorithms, as discussed in section 8.3, are not 
easily scalable to a large number of sensors. However, employing a large 
number of sensors at each cluster is unavoidable when the observation 
accuracy of sensors are low. Fusing multiple sensor readings compensate for 
the observation errors that occur prior to encoding. Therefore, there is an 
essential need for an easily scalable distributed joint source-channel coding 
algorithm. This solution should be flexible enough to accommodate dynamic 
clustering with varying number of moving sensors at each cluster. Further, the 
developed algorithm should be capable of accommodating time varying and 
unknown observation models and should be easily integrated with the current 
sensor structures and contemporary networking protocols. To address these 
requirements, in section 8.4 an adaptive algorithm is presented for efficient 
data collection across a data field, where source locations are inaccessible due 
to either unknown source locations or harsh environmental conditions [86].  
 
The commonly accepted presumption of superiority of iterative decoding over 
non-iterative decoding is revisited in section 8.4.3. Indeed, the proposed 
convergence analysis, developed based on EXIT chart technique, suggests that 
in some system conditions, the soft information exchange among constituent 
decoders at the destination do not improve the overall end-to-end error rate. 
Therefore, avoiding these unnecessary information exchange cycles reduces 
the average decoding complexity [82] [83]. Further, in section 8.5.1, an easy-
to-evaluate information-theoretic function is derived to determine the 
minimum number of sensors to reach the highest achievable error recovery 
performance [55]. 
 

To generalize the proposed scheme to large-scale networks, a two-
tiered clustered system model is considered in section 8.6, where each cluster 
includes a single data source, which is remotely monitored by surrounding 
sensors. The sensors within a cluster collectively compress and transmit their 
observations to a data fusion center via two super-nodes. This two-tiered 
network model is robust to super-node failure in contrast with the 
traditionally designed single super-node systems [73]. The set of two-hop 
communication channels from the sensors to the data fusion center via two 
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super-nodes is modeled as inner channels. This enabled us to analyze the end-
to-end performance of the whole system by evaluating the distributed coding 
operation over inner channels. The available total power is optimally split to 
the existing sensor and super nodes such that the overall data throughput is 
maximized [85]. This system demonstrates the easy integration of our 
proposed coding scheme with desired relaying methods. 
This book chapter suggests several directions as continuation of the current 
studies as follows: 
 

− Designing and optimizing the coding parameters for the more 
general case of unequal observation parameters 𝛽𝛽𝑖𝑖 ≠ 𝛽𝛽 and 
unequal channel qualities 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖 ≠ 𝑆𝑆𝑆𝑆𝑆𝑆. 

− The proposed scheme is robust to sensors failure and stays 
operational as long as one or some of the sensors are active. 
However, each sensor failure degrades the overall end-to-end 
BER performance. This performance degradation can be 
compensated by changing the coding rate of other active sensor. 
This method can be studied as another possible extension of this 
work, which involves quantification of the BER performance 
degradation due to a sensor failure and finding the new coding 
rate to compensate for this loss.  

− Developing more elegant learning algorithms (such as 
reinforcement learning) in order to tune the required coding 
rates without the need for estimating the sensors measurement 
accuracies and channel qualities can simplify the implementation 
of sensors. 

− A preliminary study is conducted in [86] to interrogate multiple 
SAW based passive sensors using a single interrogator. If all the 
passive sensors observe a common data source, similar 
techniques can be developed for passive sensors to harness the 
correlation among sensor observations to enhance the final 
estimation accuracy. 
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